
Missing Data in Longitudinal Studies:
Mixed-effects Pattern-Mixture and Selection Models

Hedeker D & Gibbons RD (1997). Application of random-effects pattern-mixture
models for missing data in longitudinal studies. Psychological Methods, 2, 64-78.

Chapter 14 in Hedeker & Gibbons (2006), Longitudinal Data Analysis, Wiley.

1



Example: Treatment-Related Change Across Time

Data from the NIMH Schizophrenia collaborative study on
treatment related changes in overall severity. IMPS item 79,
Severity of Illness, was scored as:

1 = normal

2 = borderline mentally ill

3 = mildly ill
4 = moderately ill

5 = markedly ill

6 = severely ill

7 = among the most extremely ill

Sample size at Week
Group 0 1 2 3 4 5 6 completers
PLC (n=108) 107 105 5 87 2 2 70 65%
DRUG (n=329) 327 321 9 287 9 7 265 81%
Drug = Chlorpromazine, Fluphenazine, or Thioridazine
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Descriptive Statistics - NIMH Schizophrenia study

Observed IMPS79 Means, n, and sd
week 0 week 1 week 3 week 6

placebo 5.35 4.99 4.74 4.25
n 107 105 87 70

drug 5.37 4.43 3.80 3.06
n 327 321 287 265

pooled sd .87 1.23 1.44 1.48

Correlations: n = 313 and 321 ≤ n ≤ 424
week 0 week 1 week 3 week 6

week 0 1.0 .41 .25 .15
week 1 .43 1.0 .67 .47
week 3 .29 .67 1.0 .67
week 6 .14 .47 .68 1.0
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Mixed-effects regression model (MRM) - Schizophrenia study

IMPS79 = Drug + T ime + (Drug × T ime) + Subj + (Subj × T ime) + Error

IMPS79ij = β0 +β1Drugi +β2SWeekj +β3(Drugi×SWeekj) + υ0i +υ1iSWeekj +εij

i = 1, . . . , N subjects j = 1, . . . , ni obs

Drug = 0 for placebo, 1 for drug

SWeek = 0,
√

1 = 1,
√

2 = 1.41,
√

3 = 1.73,
√

4 = 2,
√

5 = 2.24,
√

6 = 2.45
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NIMH Schizophrenia Study - IMPS79 across Time: ML Estimates (se)
Completers All Subjects
N = 335 N = 437

est. se p < est. se p <
intercept 5.221 0.109 .001 5.348 0.088 .001

Drug (0 = plc; 1 = drug) 0.202 0.123 .101 0.046 0.101 .65

Time (sqrt week) -0.393 0.073 .001 -0.336 0.068 .001

Drug by Time -0.539 0.083 .001 -0.641 0.078 .001

Intercept variance 0.398 0.068 0.369 0.060
sd = .63 sd =.61

Int-Time covariance -0.011 0.035 0.021 0.034
r = -.04 r =.07

Time variance 0.205 0.031 0.242 0.032
sd = .45 sd =.49
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Fitted and Obs. Means across Time by Condition

ˆIMPSij = 5.35 + .05 Drugi − .34 T imej − .64(Di × Tj)
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Missing Data and Incomplete Data Models

y
〈 y(O) R = 0 (observed)

y(M ) R = 1 (missing)

• GEE assumes “Missing Completely at Random” (MCAR)

P (R | y,X) = P (R | X) for all y

conditional on covariates, R is independent of y(O) and y(M )

⇒ “covariate-dependent missingness”

• Likelihood-based MRM assumes “Missing at Random” (MAR)

P (R | y,X) = P (R | X,y(O)) for all y(M )

conditional on covariates and observed values of the dependent
variable, R is independent of y(M )

⇒ “ignorable non-response”
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Missing Not At Random (MNAR) Models

• When the data are nonignorable (i.e., MNAR), standard
statistical models can yield badly biased results

• The observed data provide no information to either confirm or
refute ignorability

⇒ cannot test MAR versus MNAR

Two general classes of MNAR models

• Pattern mixture models - use missing data pattern information in
the longitudinal modeling

• Selection models - modeling of both the longitudinal and
missingness processes

⇒ will be illustrated in terms of MRMs, however they can be more
broadly defined and utilized
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Comments on MNAR models

• Ordinary MRM (and other full-likelihood models) assume MAR,
these extended models do not

• Use of nonignorable models can be helpful in conducting a
sensitivity analysis; to see how the conclusions might vary as a
function of what is assumed about the missing data

• Not necessarily a good idea to rely on a single MNAR model,
because the assumptions about the missing data are impossible to
assess with the observed data

• One should use MNAR models sensibly, possibly examining
several types of such models for a given dataset
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Pattern-mixture models for missing data
Little (1993, 1994, 1995); Hedeker & Gibbons (1997)

• divide subjects into groups depending on their missing data
pattern

• the missing data pattern is a between-subjects variable to be used
in longitudinal data analysis

For 3 timepoints, there are eight (23) possible missing data patterns:

pattern group time1 time2 time3

1 O O O
2 O O M

3 O M O

4 M O O where, O=observed and M=missing

5 M M O
6 O M M

7 M O M

8 M M M

Since MMM provides no data, it is ignored in the analysis
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Representing patterns with dummy-coded variables

pattern D1 D2 D3 D4 D5 D6
OOO 0 0 0 0 0 0
OOM 1 0 0 0 0 0
OMO 0 1 0 0 0 0
MOO 0 0 1 0 0 0
MMO 0 0 0 1 0 0
OMM 0 0 0 0 1 0
MOM 0 0 0 0 0 1

• these dummy-codes represent deviations from pattern OOO

• Other coding schemes can be used (“effect” or “sequential”
coding)

• these variables are used as main effects and interactions
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Classification of Subjects based on missing-data

Dropi =





0 subject measured at week 6 (last timepoint)
1 subject missing at week 6 (last timepoint)

Drug Drop group

group completer dropout total

placebo 70 38 108

(.65) (.35)

drug 265 64 329

(.81) (.19)

total 335 102 437

• Dropout not independent of Drug χ2
1 = 11.25, p < .001

• Is dropout related to severity of illness?

• Does dropout moderate the influence of other variables’ effects on
severity of illness?
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Where did the placebo patients go?
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Mixed-effects pattern mixture model: Schiz data

augment the basic MRM of IMPS79 over time:

IMPS79ij = β0+β1Drugi+β2SWeekj +β3(Drugi×SWeekj)+υ0i+υ1iSWeekj +εij ,

with variables based on the missing data patterns

e.g., completers (N = 335) vs non-completers (N = 102)

Drop = 0 or 1 for those that did not or did dropout from the trial
(i.e., were not measured at the final study timepoint)

IMPS79ij = β0 + β1Drugi + β2SWeekj + β3(Drugi × SWeekj)

+ βD
0 Dropi + βD

1 (Dropi × Drugi) + βD
2 (Dropi × Sweekj)

+ βD
3 (Dropi × Drugi × Sweekj) + υ0i + υ1iSWeekj + εij

• β0, β1, β2, and β3 are for the completer subsample

• βD
0 , βD

1 , βD
2 , and βD

3 how dropouts differ from completers

• three-way interaction is of particular interest - indicates how the drug by time
interaction varies with study completion
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Less Restrictive Pattern Mixture Model

• use week of dropout variable Di in forming missing data patterns

• six missing data patterns: five dropout weeks and completers

• Let Dm = D1, . . . , D5 denote dummy-variables which contrast each
dropout pattern to the completers

IMPS79ij = β0 + β1Drugi + β2SWeekj + β3(Drugi × SWeekj)

+
5∑

m=1
βm

0 Dm + βm
1 (Dm × Drugi) + βm

2 (Dm × Sweekj)

+ βm
3 (Dm × Drugi × Sweekj)

+ υ0i + υ1iSWeekj + εij

• β0, β1, β2, β3 are for completers

• βm
0 , βm

1 , βm
2 , βm

3 indicate how dropout group m differs from
completers

• the βm
3 parameters are of great interest
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parameter est se p < est se p < est se p <
Int β0 5.348 .088 .0001 5.221 .108 .0001 5.221 .107 .0001
Drug β1 .046 .101 .65 .202 .121 .096 .202 .120 .094
SWeek β2 -.336 .068 .0001 -.393 .076 .0001 -.393 .075 .0001
Drug × SWeek β3 -.641 .078 .0001 -.539 .086 .0001 -.539 .085 .0001

Dropout Drop = 1 (N = 102) D = 1 (N = 37)
Int β1

0 .320 .186 .086 .471 .288 .102
Drug β1

1 -.399 .227 .079 -.456 .353 .20
SWeek β1

2 .252 .159 .115 .240 .334 .47
Drug × SWeek β1

3 -.635 .196 .002 -.412 .412 .32

D = 2 (N = 10)
Int β2

0 .524 .437 .23
Drug β2

1 -.703 .613 .25
SWeek β2

2 .338 .398 .40
Drug × SWeek β2

3 -.735 .562 .19

D = 3 (N = 42)
Int β3

0 .047 .256 .85
Drug β3

1 -.198 .318 .53
SWeek β3

2 .377 .208 .07
Drug × SWeek β3

3 -.835 .261 .002

D = 4 (N = 5)
Int β4

0 .801 .653 .22
Drug β4

1 -.237 .841 .78
SWeek β4

2 -.101 .485 .84
Drug × SWeek β4

3 -1.210 .625 .054

D = 5 (N = 8)
Int β5

0 .337 .645 .60
Drug β5

1 -.842 .746 .26
SWeek β5

2 -.157 .466 .74
Drug × SWeek β5

3 .231 .538 .67

Deviance 4649.0 4623.3 4607.8
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Pattern-mixture averaged results (Little, 1995)

• Obtained averaging over missing-data patterns

– e.g., completers and dropouts

• Uses sample proportions as estimates of missing-data pattern
proportions

• Depends on “model” for missing-data patterns

– e.g., completer versus dropout status varies by tx

Completer Dropout

placebo 70/108 placebo 38/108

drug 265/329 drug 64/329

335/437 102/437
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Pattern-mixture averaged results

ˆ̄β = π̂c β̂c + π̂d β̂d = β̂c + π̂dβ̂
D

• β̂c correspond to the coefficients in the current model formulation
not involving dropout (i.e., intercept, drug, time, drug by time)

• (β̂d − β̂c) = β̂
D

correspond to the dropout-related coefficients in
the current model formulation (i.e., dropout, dropout by drug,
dropout by time, dropout by drug by time)

• π̂d is the sample proportion of dropouts

⇒ averaged estimates are linear combinations of model estimates
(obtained by simple arithmetic or via ESTIMATE statement in SAS)
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Placebo Intercept

335

437
(5.22) +

102

437
(5.22 + 0.32) = 5.22 +

102

437
(0.32) = 5.30

Completers Dropouts

Placebo Time effect

335

437
(−0.39) +

102

437
(−0.39 + 0.25) = −0.39 +

102

437
(0.25) = −0.33

Completers Dropouts

Drug Intercept difference

335

437
(0.20) +

102

437
(0.20 − 0.40) = 0.20 +

102

437
(−0.40) = 0.11

Completers Dropouts

Drug Time difference

335

437
(−0.54) +

102

437
(−0.54 − 0.64) = −0.54 +

102

437
(−0.64) = −0.69

Completers Dropouts
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SAS example using ESTIMATE

/* pattern-mixture random intercept and trend model

/* using marginal dropout proportion to estimate averaged results */

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL imps79 = sweek drug sweek*drug dropout dropout*sweek

dropout*drug dropout*drug*sweek / SOLUTION;

RANDOM INTERCEPT sweek /SUB=id TYPE=UN G GCORR;

ESTIMATE ’avg int’ INTERCEPT 1 sweek 0 drug 0 sweek*drug 0 dropout .2334

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg sweek’ INTERCEPT 0 sweek 1 drug 0 sweek*drug 0 dropout 0

dropout*sweek .2334 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg drug’ INTERCEPT 0 sweek 0 drug 1 sweek*drug 0 dropout 0

dropout*sweek 0 dropout*drug .2334 dropout*drug*sweek 0;

ESTIMATE ’avg sweek*drug’ INTERCEPT 0 sweek 0 drug 0 sweek*drug 1 dropout 0

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek .2334;

RUN;

where dropout =0 (completers) or =1 (dropouts) and 102/437 = .2334 (i.e., dropout proportion)
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Don’t have (or like) SAS?
(i.e., can I do pattern-mixture modeling with SPSS? .... YES!)

Weighted Effect Coding (Darlington, 1990, Regression and Linear
Models, pp. 238-239): in ANOVA context

• yields comparisons of each cell mean, except the reference cell,
with a weighted average of cell means

Effect coding
level D
1 1
2 -1

becomes

Weighted effect coding
level D∗

1 1

2 -1 ×weight of level 1
weight of level 2

Y = β0 + β1D
∗ + e

β0 = weighted average of Y means across the two levels
β1 = difference between level 1 mean and the weighted average
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SPSS example using weighted effect coding

Step 1 - do some data management to create the necessary variables

SCHIZREP.SAV
ID subject’s ID
IMPS79 severity of illness (dependent variable)
Week study week (= 0, 1, 2, 3, 4, 5, 6)
Drug =0 (placebo) or =1 (drug)
SexM =0 (female) or =1 (male)

SWeek sqrt of Week
DrugSwk product of Drug by Sweek

Week max subject’s maximum value of Week
Dropout =0 (Week max = 6) or =1 (Week max < 6)

DropW = −π̂D
π̂C

= −102
335

(Dropout = 0) or =1 (Dropout = 1)

DropWDrug product of DropW by Drug

DropWSweek product of DropW by SWeek

DropWDrugSwk product of DropW by Drug by SWeek
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Model with weighted effect coding

IMPS79ij = β0 + β1Drugi + β2SWeekj + β3(Drugi × SWeekj)

+ βDW
0 DropWi + βDW

1 (DropWi × Drugi)

+ βDW
2 (DropWi × Sweekj)

+ βDW
3 (DropWi × Drugi × Sweekj)

+ υ0i + υ1iSWeekj + εij

• β0, β1, β2, and β3 are weighted averages over completers and
dropouts (i.e., exactly what we want!)

• βDW
0 , βDW

1 , βDW
2 , and βDW

3 how dropouts differ from the
weighted averages
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SPSS syntax for model with weighted effect coding

Schizpm.sps

MIXED

Imps79 WITH Drug Sweek DrugSwk

DropW DropWDrug DropWSweek DropWDrugSwk

/FIXED = Drug Sweek DrugSwk

DropW DropWDrug DropWSweek DropWDrugSwk

/METHOD = ML

/PRINT = SOLUTION TESTCOV

/RANDOM INTERCEPT Sweek | SUBJECT(ID) COVTYPE(UN) .
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Pattern-mixture averaged results

using either approach (ESTIMATE in SAS or weighted effect coding
in SPSS), we get:

parameter estimate std error p-value
Intercept 5.2958 .0898 .0001
Drug .1086 .1029 .29
SWeek -.3346 .0670 .0001
DrugSwk -.6868 .0776 .0001

Great! We’re done, right?
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I’ve got some good news, and some not-so-good news

averaged estimates are fine

standard errors are not exactly correct
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Standard Errors for Averaged Estimates

V̂ ( ˆ̄β) = V̂ ( ˆ̄β)F +
nd nc

N3 (β̂
D

)2

where, V̂ ( ˆ̄β)F is the variance treating the sample proportions as
known, i.e., the square of the standard error one gets using

ˆ̄β = β̂c + π̂dβ̂
D

and not taking into account the fact that πd is estimated (i.e., this is
obtained using methods that yield linear combinations of estimates
and their associated standard errors)

⇒ simple augmentation of V̂ ( ˆ̄β)F to get correct standard errors
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Calculation of V̂ (ˆ̄β) = V̂ (ˆ̄β)F + nd nc
N3 (β̂D)2

parameter ˆ̄β V̂ (ˆ̄β)F β̂D Augment V̂ (ˆ̄β) SE
intercept 5.2958 (.0898)2 = .00806 .3203 .000042 .00810 .0900
time -.3346 (.0670)2 = .00449 .2517 .000026 .00452 .0672
drug .1086 (.1029)2 = .01059 -.3987 .000065 .01066 .1032
drug × time -.6868 (.0776)2 = .00602 -.6348 .000165 .00619 .0786

Augment = nd nc
N3 (β̂D)2 , here, nd nc

N3 = 102×335
(437)3

= .00040945
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Pattern-mixture averaged results - using drug-stratified proportions

Placebo Intercept
70

108
(5.22) +

38

108
(5.22 + 0.32) = 5.22 +

38

108
(0.32) = 5.33

Completers Dropouts

Placebo Time effect
70

108
(−0.39) +

38

108
(−0.39 + 0.25) = −0.39 +

38

108
(0.25) = −0.30

Completers Dropouts

Drug Intercept difference
265

329
(0.20) +

64

329
(0.20 − 0.40) = 0.20 +

64

329
(−0.40) = 0.12

Completers Dropouts

Drug Time difference
265

329
(−0.54) +

64

329
(−0.54 − 0.64) = −0.54 +

64

329
(−0.64) = −0.66

Completers Dropouts

31



Calculation of V̂ (ˆ̄β) = V̂ (ˆ̄β)F + nd nc
N3 (β̂D)2

parameter ˆ̄β V̂ (ˆ̄β)F β̂D Augment V̂ (ˆ̄β) SE
intercept 5.3337 (.0879)2 = .00773 .3203 .000217 .00795 .0891
time -.3048 (.0698)2 = .00487 .2517 .000134 .00500 .0707
drug .1241 (.1043)2 = .01088 -.3987 .000076 .01096 .1047
drug × time -.6621 (.0772)2 = .00596 -.6348 .000192 .00615 .0784

Augment = nd nc
N3 (β̂D)2 , where

nd nc
N3 = 38×70

(108)3
= .00211159 for placebo

nd nc
N3 = 64×265

(329)3
= .00047625 for drug
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NIMH Schizophrenia Study - IMPS79 across Time: MRM models

Ordinary Pattern mixture PM averaged
parameter est se p < est se p < est se p <
Int β0 5.348 .088 .0001 5.221 .108 .0001 5.334 .089 .0001
Drug β1 .046 .101 .65 .202 .121 .096 .124 .105 .24
SWeek β2 -.336 .068 .0001 -.393 .076 .0001 -.305 .071 .0001
Drug × SWeek β3 -.641 .078 .0001 -.539 .086 .0001 -.662 .078 .0001

Int βD
0 .320 .186 .086

Drug βD
1 -.399 .227 .079

SWeek βD
2 .252 .159 .115

Drug × SWeek βD
3 -.635 .196 .002

Deviance 4649.0 4623.3
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Mixed-effects selection models

These models have also been called

• random-coefficient selection models (Little, 95)

• random-effects-dependent models (Hogan & Laird, 97)

• shared parameter models (Wu & Carroll, 88; Ten Have et al., 98)

• One specifies both a model for the longitudinal outcome and a
model for the dropout (or missingness)

• Both models depend on random subject effects, most or all of which
are shared by both models
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Longitudinal model - ordinary MRM of yi

yi = Xiβ + Ziυi + εi

Dropout model - grouped/discrete time survival analysis of Di

log(− log(1 − P(Di = j | Di ≥ j))) = W iα + υiα
∗

W i includes dropout predictors, some or all may be in Xi

To the extent that α∗ are nonzero, this is a nonignorable model be-
cause missingness, here characterized simply as dropout time, is de-
pendent on both yO

i and yM
i (via υi)
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Treatment (denoted Drug) by last wave (denoted Maxweek)

Maxweek

Drug 1 2 3 4 5 6 Total
placebo 13 5 16 2 2 70 108

(.12) (.05) (.15) (.02) (.02) (.65)
drug 24 5 26 3 6 265 329

(.07) (.02) (.08) (.01) (.02) (.81)

⇒ dropout is more common among the placebo group

Pearson χ2 test yields p < .025;

Mantel-Haenszel χ2 test for trend yields p < .0013
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Mixed-effects selection model - Schiz study

Longitudinal model:

IMPS79ij = β0 +β1Drugi +β2SWeekj +β3(Drugi×SWeekj) + υ0i +υ1iSWeekj +εij

or, after orthogonalizing the random effects
(υi = Sθi, where Συ = SS′, Cholesky factorization)

IMPS79ij = β0 + β1Drugi + β2SWeekj + β3(Drugi × SWeekj)

+ (συ0
+ σ∗

υ01
SWeekj) θ0i + σ∗

υ1
SWeekj θ1i + εij

with σ∗
υ01

= συ01/συ0 and σ∗
υ1

=
√
σ2

υ1
− σ2

υ01
/σ2

υ0
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Dropout model:

log(− log(1 − P(Di = j | Di ≥ j))) = α0j + α1Drugi + α2θ0i + α3θ1i

+ α4(Drugi × θ0i) + α5(Drugi × θ1i)

or as

P(Di ≤ j) = 1 − exp(− exp(α0j + α1Drugi + α2θ0i + α3θ1i

+ α4(Drugi × θ0i) + α5(Drugi × θ1i)))

• random effects are summaries of a person’s observed and unob-
served y data

• this shared parameter model is a nonignorable model if α2 = α3 =
α4 = α5 = 0 is rejected

• test of whether a particular model of ignorability is reasonable
vs a particular model of nonignorability (i.e., not a general test
of ignorability)
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Separate and shared parameter models

Separate (deviance = 5380.2) Shared (deviance = 5350.1)

parameter ML est std error p-value ML est std error p-value

Outcome

intercept β0 5.348 .088 .0001 5.320 .088 .0001
Drug β1 .046 .101 .65 .088 .102 .87

SWeek β2 -.336 .068 .0001 -.272 .073 .0002

Drug × Sweek β3 -.641 .078 .0001 -.737 .083 .0001

Dropout

Drug α1 -.693 .205 .0008 -.703 .301 .02

Random intercept α2 .447 .333 .18
Random slope α3 .891 .467 .06

Drug × intercept α4 -.592 .398 .14

Drug × slope α5 -1.638 .536 .003

• separate parameter model yields identical results as running these two models,
one for yi and one for Di, separately

• shared parameter model fits better, χ2
4 = 30.1, p < .0001

• for longitudinal component, conclusions are same as MAR model

• marginally significant slope: for the placebo group there is a tendency to dropout
as the slope increases

• significant negative Drug × slope: the slope effect is opposite for the drug group;
drug patients with more negative slopes (i.e., greater improvement) are more
likely to drop out
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NIMH Schizophrenia Study: Severity across Time
ML Estimates (se) random intercept and slope models

Shared Pattern
Completers All cases Parameter Mixture
N = 335 N = 437 N = 437 N = 437

intercept 5.221 5.348 5.320 5.334
(.109) (.088) (.088) (.089)

Drug (0=P; 1=D) 0.202 0.046 0.088 0.124
(.123) (.101) (.102) (.105)

Time (sqrt wk) -0.393 -0.336 -0.272 -0.305
(.073) (.068) (.073) (.071)

Drug by Time -0.539 -0.641 -0.737 -0.662
(.083) (.078) (.083) (.078)
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Conclusions

• Mixed-effects regression models (MRMs) useful for incomplete
longitudinal data

– can handle subjects measured incompletely or at different
timepoints

– missing data assumed MAR

∗ dependent on covariates and

∗ available data on dependent variable
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• Mixed-effects pattern-mixture and selection (i.e., shared
parameter) models augment MRM

Pattern-mixture

– adds missing-data pattern as between-subjects factor

– assesses degree to which “missingness” influences outcomes

– assesses degree to which “missingness” interacts with model
terms (i.e., intervention group, intervention group by time)

Selection

– missingness in terms of important covariates

– missingness in terms of (shared) random subject effects

⇒ Does not invent data, attempts to maximize information
obtained from available data
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SAS MIXED code - SCHIZPM5b.SAS

DATA one; INFILE ’c:\mixdemo\schizrep.dat’;
INPUT id imps79 week drug sex ;

/* the coding for the variables is as follows:

id = subject id number

imps79 = overall severity (1=normal, ..., 7=among the most extremely ill)

week = 0,1,2,3,4,5,6 (most of the obs. are at weeks 0,1,3, and 6)

drug 0=placebo 1=drug (chlorpromazine, fluphenazine, or thioridazine)

sex 0=female 1=male */

/* compute the square root of week to linearize relationship */

sweek = SQRT(week);

/* calculate the maximum value of week for each subject

(suppress the printing of the output for this procedure) */

PROC MEANS NOPRINT; CLASS id; VAR week; OUTPUT OUT=two MAX=maxweek;

RUN;

/* determine if a subject has data at week 6

dropout = 0 (for completers) or = 1 (for dropouts) */

DATA three; SET two;

dropout=0;

IF maxweek LT 6 THEN dropout=1;
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/* dataset with all subjects (adding the dropout variable) */

DATA four; MERGE one three; BY id; IF id NE .;

/* random intercept and trend model */

PROC MIXED DATA=four METHOD=ML COVTEST;

CLASS id;

MODEL imps79 = sweek drug sweek*drug / SOLUTION;

RANDOM INTERCEPT sweek /SUB=id TYPE=UN G GCORR;

RUN;

/* pattern-mixture random intercept and trend model

/* using marginal dropout proportion to estimate averaged results */

PROC MIXED DATA=four METHOD=ML COVTEST;

CLASS id;

MODEL imps79 = sweek drug sweek*drug dropout dropout*sweek

dropout*drug dropout*drug*sweek / SOLUTION;

RANDOM INTERCEPT sweek /SUB=id TYPE=UN G GCORR;

ESTIMATE ’avg int’ INTERCEPT 1 sweek 0 drug 0 sweek*drug 0 dropout .2334

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg sweek’ INTERCEPT 0 sweek 1 drug 0 sweek*drug 0 dropout 0

dropout*sweek .2334 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg drug’ INTERCEPT 0 sweek 0 drug 1 sweek*drug 0 dropout 0

dropout*sweek 0 dropout*drug .2334 dropout*drug*sweek 0;

ESTIMATE ’avg sweek*drug’ INTERCEPT 0 sweek 0 drug 0 sweek*drug 1 dropout 0

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek .2334;

RUN;
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/* pattern-mixture random intercept and trend model

/* using drug-specific dropout proportions to estimate averaged results */

PROC MIXED DATA=four METHOD=ML COVTEST;

CLASS id;

MODEL imps79 = sweek drug sweek*drug dropout dropout*sweek

dropout*drug dropout*drug*sweek / SOLUTION;

RANDOM INTERCEPT sweek /SUB=id TYPE=UN G GCORR;

ESTIMATE ’avg int’ INTERCEPT 1 sweek 0 drug 0 sweek*drug 0 dropout .35185

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg sweek’ INTERCEPT 0 sweek 1 drug 0 sweek*drug 0 dropout 0

dropout*sweek .35185 dropout*drug 0 dropout*drug*sweek 0;

ESTIMATE ’avg drug’ INTERCEPT 0 sweek 0 drug 1 sweek*drug 0 dropout 0

dropout*sweek 0 dropout*drug .19453 dropout*drug*sweek 0;

ESTIMATE ’avg sweek*drug’ INTERCEPT 0 sweek 0 drug 0 sweek*drug 1 dropout 0

dropout*sweek 0 dropout*drug 0 dropout*drug*sweek .19453;

RUN;
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SAS code - SCHZ2MODS.SAS

TITLE1 ’shared parameter model of time to dropout and imps79 across time’;

DATA one; INFILE ’c:\mixdemo\schizrep.dat’; INPUT id imps79 week drug sex ;

/* The coding for the variables is as follows:

id = subject id number

imps79 = overall severity (1=normal, ..., 7=most extremely ill)

week = 0,1,2,3,4,5,6 (most of the obs. are at weeks 0,1,3, and 6)

drug 0=placebo 1=drug (chlorpromazine, fluphenazine, or thioridazine)

sex 0=female 1=male */

/* compute the square root of week to linearize relationship */

sweek = SQRT(week);

/* calculate the maximum value of week for each subject

and get drug in this aggregated dataset too */

PROC MEANS NOPRINT; CLASS id; VAR week drug;

OUTPUT OUT=two MAX(week drug)=maxweek drug;

/* setting up imps79 across time and maxweek as one outcome vector */

DATA daty; SET one; outcome = imps79; ind = 0;

DATA datr; SET two; outcome = maxweek; ind = 1; IF id NE .;

DATA all; SET daty datr; BY id;

• uppercase represents specific SAS syntax; lowercase represents user-defined

• the SAS dataset all includes the (ni + 1)× 1 outcome vector y∗
i , named outcome, which contains yi as its

first ni elements and Di as its final element

• ind with values of 0 or 1, is also defined; this variable will be used to distinguish between the yi and Di

elements
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/* random trend model for imps79 */

PROC MIXED DATA=daty METHOD=ML COVTEST;

CLASS id;

MODEL outcome = drug sweek sweek*drug / SOLUTION;

RANDOM INTERCEPT sweek /SUB=id TYPE=UN G GCORR;

/* model for time to dropout - grouped-time proportional hazards model */

PROC LOGISTIC DATA=datr;

MODEL outcome = drug / LINK = CLOGLOG;
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/* separate modeling of imps79 and time to dropout */

PROC NLMIXED DATA=all;

PARMS b0=5.35 b1=.05 b2=-.34 b3=-.64 sde=.76 v0=.61 v01=.02 v1=.49

a1=-.69 i1=-1.95 i2=-1.70 i3=-.99 i4=-.84 i5=-.69;

IF (ind = 0) THEN

DO;

z = (outcome - (b0 + b1*drug + b2*sweek + b3*drug*sweek

+ (v0 + v01*sweek/v0)*u1

+ SQRT(v1*v1 - (v01*v01)/(v0*v0))*sweek*u2));

p = (1 / SQRT(2*3.14159*sde*sde)) * EXP(-.5 * (z*z) / (sde*sde));

END;

IF (ind = 1) THEN

DO;

z = a1*drug;

IF (outcome=1) THEN

p = 1 - EXP(0 - EXP(i1+z));

ELSE IF (outcome=2) THEN

p = (1 - EXP(0 - EXP(i2+z))) - (1 - EXP(0 - EXP(i1+z)));

ELSE IF (outcome=3) THEN

p = (1 - EXP(0 - EXP(i3+z))) - (1 - EXP(0 - EXP(i2+z)));

ELSE IF (outcome=4) THEN

p = (1 - EXP(0 - EXP(i4+z))) - (1 - EXP(0 - EXP(i3+z)));

ELSE IF (outcome=5) THEN

p = (1 - EXP(0 - EXP(i5+z))) - (1 - EXP(0 - EXP(i4+z)));

ELSE IF (outcome=6) THEN

p = 1 - (1 - EXP(0 - EXP(i5+z)));

END;

IF (p > 1e-8) THEN ll = LOG(p); else ll = -1e100;

MODEL outcome ∼ GENERAL(ll);

RANDOM u1 u2 ∼ NORMAL([0,0], [1,0,1]) SUBJECT=id;
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/* shared parameter model of imps79 and time to dropout */

PROC NLMIXED DATA=all;

PARMS b0=5.35 b1=.05 b2=-.34 b3=-.64 sde=.76 v0=.61 v01=.02 v1=.49

a1=-.69 a2=0 a3=0 a4=0 a5=0 i1=-1.95 i2=-1.70 i3=-.99 i4=-.84 i5=-.69;

IF (ind = 0) THEN

DO;

z = (outcome - (b0 + b1*drug + b2*sweek + b3*drug*sweek

+ (v0 + v01*sweek/v0)*u1

+ SQRT(v1*v1 - (v01*v01)/(v0*v0))*sweek*u2));

p = (1 / SQRT(2*3.14159*sde*sde)) * EXP(-.5 * (z*z) / (sde*sde));

END;

IF (ind = 1) THEN

DO;

z = a1*drug + a2*u1 + a3*u2 + a4*u1*drug + a5*u2*drug;

IF (outcome=1) THEN

p = 1 - EXP(0 - EXP(i1+z));

ELSE IF (outcome=2) THEN

p = (1 - EXP(0 - EXP(i2+z))) - (1 - EXP(0 - EXP(i1+z)));

ELSE IF (outcome=3) THEN

p = (1 - EXP(0 - EXP(i3+z))) - (1 - EXP(0 - EXP(i2+z)));

ELSE IF (outcome=4) THEN

p = (1 - EXP(0 - EXP(i4+z))) - (1 - EXP(0 - EXP(i3+z)));

ELSE IF (outcome=5) THEN

p = (1 - EXP(0 - EXP(i5+z))) - (1 - EXP(0 - EXP(i4+z)));

ELSE IF (outcome=6) THEN

p = 1 - (1 - EXP(0 - EXP(i5+z)));

END;

IF (p > 1e-8) THEN ll = LOG(p); else ll = -1e100;

MODEL outcome ∼ GENERAL(ll);

RANDOM u1 u2 ∼ NORMAL([0,0], [1,0,1]) SUBJECT=id;
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