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Logistic Regression - model that relates explanatory variables
(i.e., covariates) to a dichotomous dependent variable

Multilevel Logistic Regression - model that relates covariates to a
dichotomous dependent variable, where observations are nested

• Clustered: subjects within clusters

• Longitudinal: repeated observations within subjects

models can also be recast as probit regression models
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Random-intercept Logistic Regression Model

Consider the model with p covariates for the dichotomous
response Yij of subject i (i = 1, . . . , N) at timepoint j
(j = 1, . . . , ni):

log




Pr(Yij = 1)

1 − Pr(Yij = 1)


 = x′

ijβ + υi

Yij = dichotomous response of subject i at timepoint j

xij = (p + 1) × 1 vector of covariates

β = (p + 1) × 1 vector of regression coefficients

υi = random subject effects distributed NID(0, σ2
υ)
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Dichotomous Response and Threshold Concept

Continuous yij - an unobservable latent variable - related to
dichotomous response Yij via “threshold concept”

• threshold value γ on y continuum

Response occurs Yij = 1 if γ < yij
otherwise, a response does not occur (Yij = 0)
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The Threshold Concept in Practice

“How was your day?”
(what is your level of satisfaction today?)

• Satisfaction may be continuous, but we usually emit a
dichotomous response:
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Model for Latent Continuous Responses

yij = x′
ijβ + υi + εij

• εij ∼ std normal (mean 0, variance 1): probit regression

• εij ∼ std logistic (mean 0, variance π2/3): logistic regression

Underlying latent variable

• useful way of thinking of the problem

• not an essential assumption of the model

• used for intra-class correlation

ICC =
σ2
υ

σ2
υ + 1

for probit (equals tetrachoric if n = 2)

=
σ2
υ

σ2
υ + π2/3

for logistic
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Scaling of regression coefficients

Fixed-effects or marginal model - β estimates from logistic are
larger in absolute value than from probit by

≈
√√√√√√√√
π2/3

1
=

√√√√√√√√
std logistic variance

std normal variance
= 1.8

• Amemiya (1981) suggests 1.6, Long (1997) suggests 1.7

Random-effects model - β estimates from random-effects model
are larger in abs. value than fixed-effects or marginal model by

≈
√

d =

√√√√√√√√
σ2
υ + σ2

σ2 =

√√√√√√√√
RE variance

FE variance

• d = design effect in sampling literature

• Zeger et. al. (1988) σ2 = (15/16)2π2/3 for logistic
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Random-Intercept Model Within-Subjects / Between-Subjects models

Within-subjects model - level 1 (j = 1, . . . , ni)

observed response

log




Pr(Yij = 1)

1 − Pr(Yij = 1)


 = b0i + b1i T imeij

latent response

yij = b0i + b1i T imeij + εij

Between-subjects model - level 2 (i = 1, . . . , N)

b0i = β0 + β2 Grpi + υ0i

b1i = β1 + β3 Grpi

υ0i ∼ NID(0, σ2
υ) εij ∼ LID(0, π2/3)
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Random Intercept Logistic Model in terms of
probability

• Not linear in terms of probability

Pr(Yij = 1) =
1

1 + exp
[

−
(

β0 + β1Gi + β2Tj + β3(Gi × Tj) + υ0i
)]

where G = Group T = Time
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Random Intercept Logistic Model
in terms of log odds (logits)

• Linear in terms of log odds (logits)

log




Pr(Yij = 1)

1 − Pr(Yij = 1)


 = β0 + β1Gi + β2Tj + β3(Gi × Tj) + υ0i
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Random Intercept and Trend Model

Within-subjects model - level 1 (j = 1, . . . , ni)
latent response

yij = b0i + b1i T imeij + εij

Between-subjects model - level 2 (i = 1, . . . , N)

b0i = β0 + β2 Grpi + υ0i

b1i = β1 + β3 Grpi + υ1i




υ0i
υ1i


 ∼ NID








0
0


 ,




σ2
υ0

συ0υ1

συ0υ1 σ2
υ1








εij ∼ LID(0, π2/3)
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Treatment-Related Change Across Time

NIMH Schizophrenia collaborative study on treatment related
changes in overall severity (IMPS item # 79). Item 79, Severity
of Illness, was scored as:

1 = normal, 2 = borderline mentally ill, 3 = mildly ill,

4 = moderately ill, 5 = markedly ill, 6 = severely ill, 7 = among the most extremely ill

The experimental design and corresponding sample sizes:

Sample size at Week
Group 0 1 2 3 4 5 6 completers
PLC (n=108) 107 105 5 87 2 2 70 65%
DRUG (n=329) 327 321 9 287 9 7 265 81%
Drug = Chlorpromazine, Fluphenazine, or Thioridazine

Main question of interest:

• Was there differential improvement for the drug groups relative to the
control group?
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Descriptive Statistics

Observed proportions ≥ “moderately ill”
week 0 week 1 week 3 week 6

placebo .98 .91 .89 .71
drug .99 .82 .66 .42

Observed odds ≥ “moderately ill”
week 0 week 1 week 3 week 6

placebo 52.5 9.50 7.70 2.50
drug 80.8 4.63 1.93 .73
ratio .65 2.05 3.99 3.42

Observed log odds ≥ “moderately ill”
week 0 week 1 week 3 week 6

placebo 3.96 2.25 2.04 .92
drug 4.39 1.53 .66 -.31
difference -.43 .72 1.38 1.23
exp (odds ratio) .65 2.05 3.99 3.42
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Observed Proportions across Time by Condition

• model is not linear in terms of probabilites
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Observed Logits across Time by Condition
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NIMH Schizophrenia Study - Severity of Illness (N = 437)
Logistic Regression ML Estimates - Fixed effects model

estimates se z p <
intercept 3.702 0.441 8.39 .001

Drug (0 = plc; 1 = drug) -0.405 0.483 -0.84 .41

Time (sqrt week) -1.112 0.233 -4.78 .001

Drug by Time -0.418 0.256 -1.64 .11

−2 log L = 1362.06

ok if data were cross-sectional longitudinal or if συ = 0
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Fitted Logits across Time by Condition
fixed-effects logistic regression model

log




Pr(Yij = 1)

1 − Pr(Yij = 1)


 = 3.70 − .41 Di − 1.11 Tj − .42 (Di × Tj)
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Fitted Proportions across Time by Condition
fixed-effects logistic regression model

Pr(Yij = 1) =
1

1 + exp
[

−
(

3.70 − .41 Di − 1.11 Tj − .42 DiTj
)]
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Within-Subjects / Between-Subjects components

Within-subjects model - level 1 (j = 1, . . . , ni obs)

logitij = b0i + b1i

√
Weekj

Between-subjects model - level 2 (i = 1, . . . , N subjects)

b0i = β0 + β2Grpi + υ0i

b1i = β1 + β3Grpi

υ0i ∼ NID(0, σ2
υ)
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NIMH Schizophrenia Study - Severity of Illness (N = 437)
Logistic ML Estimates (se) - random-intercepts model

estimates se z p <
intercept 5.387 0.631 8.54 .001

Drug (0 = plc; 1 = drug) -0.025 0.654 -0.04 .97

Time (sqrt week) -1.500 0.291 -5.16 .001

Drug by Time -1.015 0.334 -3.04 .0024

Intercept variance 4.478 0.947

Intra-person correlation = 4.478/(4.478 + π2/3) = .58

−2 log L = 1249.73 χ2
1 = 112.33
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Estimated (subject-specific) Logits across Time by
Condition: random-intercepts model

log




Pr(Yij = 1)

1 − Pr(Yij = 1)


 = 5.39−.03 Di−1.50 Tj−1.01 (Di×Tj)+υ0i

υ0i ∼ NID(0, σ̂2
υ = 4.48)

β̂ assesses change in (conditional) logit due to x for subjects
with the same value of υ0i
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Random-intercepts Logistic Regression

logitij = x′
ijβ + υ0i

• every subject has their own propensity for response (υ0i)

• the influence of covariates x is determined controlling (or
adjusting) for the subject effect

• the covariance structure, or dependency, of the repeated
observations is explicitly modeled
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β0 = log odds of response for a typical subject with x = 0 and
υ0i = 0

β = log odds ratio for response associated with unit changes in
x for the same subject value υ0i
∗ referred to as “subject-specific”
∗ how a subject’s response probability depends on x

σ2
υ = degree of heterogeneity across subjects in the probability

of response not attributable to x

• most useful when the objective is to make inference about
subjects rather than the population average

• interest is in the heterogeneity of subjects
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Estimated (subject-specific) probabilities across time
Random intercepts model - placebo group

P (Yij = 1) =
1

1 + exp[−(5.39 − .03 Di − 1.50 Tj − 1.01 DiTj + υ̂0i)]
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Estimated (subject-specific) probabilities across time
Random intercepts model - drug group

P (Yij = 1) =
1

1 + exp[−(5.39 − .03 Di − 1.50 Tj − 1.01 DiTj + υ̂0i)]
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Estimated Subject-Specific Probabilites
random-intercepts logistic regression model

Pr(Yij = 1) =
1

1 + exp
[

−
(

5.39 − .03 Di − 1.50 Tj − 1.01 DiTj + υ0i
)]

where υ0i =





−1συ

1συ
and σ̂υ = 2.12
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Model fit of observed marginal proportions

1. ŷi = Xi β̂

2. calculate marginalization factor

ŝ =
√

d̂ =
√√√√(σ̂2

υ + σ2)/σ2 =
√√√√σ̂2

υ/σ2 + 1

• σ = 1 for probit or σ = π/
√

3 for logistic

• d̂ is the design effect in the sampling literature

3. marginalize ẑi = ŷi / ŝ

4. p̂i = Φ(ẑi) for probit and p̂i = Ψ(ẑi) for logistic, Φ represents
the normal cdf and Ψ the logistic cdf, i.e., 1/[1 + exp(−ẑi)]
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notes:

• In practice, for logistic, (15π)/(16
√

3) works better than
π/

√
3 as σ (Zeger et al., 1988, Biometrics)

• Logistic is approximate; relies on cumulative Gaussian
approximation to the logistic function

• For multiple random effects, calculate marginalization
vector

ŝ =
1

σ


Diag(V̂ (yi))



1/2

– V̂ (yi) = ZiΣ̂υZ′
i + σ2Ii

– Zi = design matrix for random effects

and perform element-wise division

ẑi = ŷi /. ŝ
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Estimated Marginal Logits and Probabilities
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SAS NLMIXED code: SCHZBINL.SAS

DATA one; INFILE ’c:\mixdemo\schizx1.dat’;
INPUT id imps79 imps79b imps79o int tx week sweek txswk ;

/* get rid of observations with missing values */

IF imps79 > -9;

PROC FORMAT;

VALUE imps79b 0 = ’le mild’ 1 = ’ge moderate’;

VALUE tx 0 = ’placebo’ 1 = ’drug’;

/* fixed-effects logistic regression model */

PROC LOGISTIC DESCENDING;

MODEL imps79b = tx sweek tx*sweek;

RUN;

/* random intercept logistic regression via GLIMMIX */

PROC GLIMMIX DATA=one METHOD=QUAD(QPOINTS=21) NOCLPRINT;

CLASS id;

MODEL imps79b(DESC) = tx sweek tx*sweek / SOLUTION DIST=BINARY LINK=LOGIT;

RANDOM INTERCEPT / SUBJECT=id;

RUN;
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/* random intercept logistic regression via NLMIXED */

PROC NLMIXED DATA=one QPOINTS=21;

PARMS b0=3.70 b1=-.40 b2=-1.11 b3=-.42 varu=1;

z = b0 + b1*tx + b2*sweek + b3*tx*sweek + u;

IF (imps79b=1) THEN

p = 1 / (1 + EXP(-z));

ELSE

p = 1 - (1 / (1 + EXP(-z)));

ll = LOG(p);

MODEL imps79b ∼ GENERAL(ll);

RANDOM u ∼ NORMAL(0,varu) SUBJECT=id;

ESTIMATE ’icc’ varu/((((ATAN(1)*4)**2)/3)+varu);

RUN;
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SAS IML code: SCHZBFIT1.SAS

TITLE1 ’nimh schizophrenia data - estimated marginal probabilities’;

PROC IML;

/* Results from nlmixed analysis: random intercept model */;

/* covariate matrices for placebo and drug groups */;

x0 = { 1 0 0.00000 0,

1 0 1.00000 0,

1 0 1.73205 0,

1 0 2.44949 0};
x1 = { 1 1 0.00000 0.00000,

1 1 1.00000 1.00000,

1 1 1.73205 1.73205,

1 1 2.44949 2.44949};

/* nlmixed estimates of covariate effects and random effect variance */;

beta = {5.387, -0.025, -1.500, -1.015};
varu = {4.478};

/* marginalization of person-specific estimates */;

pi = ATAN(1)*4;

nt = 4;

ivec = J(nt,1,1);

zvec = J(nt,1,1);

evec = (15/16)**2 * (pi**2)/3 * ivec;
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/* nt by nt matrix with evec on the diagonal and zeros elsewhere */;

emat = DIAG(evec);

/* variance-covariance matrix of underlying latent variable */;

vary = zvec * varu * T(zvec) + emat;

/* marginalization factor */;

sdy = SQRT(VECDIAG(vary) / VECDIAG(emat));

z0 = (x0*beta) / sdy ;

z1 = (x1*beta) / sdy;

grp0 = 1 / ( 1 + EXP(0 - z0));

grp1 = 1 / ( 1 + EXP(0 - z1));

print ’random intercept model’;

print ’marginalization of person-specific estimates’;

print ’marginal prob for group 0 - response’ grp0 [FORMAT=8.4];

print ’marginal prob for group 1 - response’ grp1 [FORMAT=8.4];
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Random intercept and trend model
within-subjects / between-subjects components

within-subjects model - level 1 (j = 1, . . . , ni obs)

logitij = b0i + b1i

√
Weekj

between-subjects model - level 2 (i = 1, . . . , N subjects)

b0i = β0 + β2Grpi + υ0i

b1i = β1 + β3Grpi + υ1i

υi ∼ NID(0,Συ)
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Logistic ML Estimates (se) - random intercept and trend model
estimates se z p <

intercept 5.928 0.948 6.25 .001
Drug (0 = plc; 1 = drug) 0.287 0.742 0.39 .70
Time (sqrt week) -1.399 0.476 -2.94 .004
Drug by Time -1.615 0.481 -3.36 .001

Variance-covariance terms
Intercept var 6.975 2.908
Int-Time covar -2.111 1.210 (rυ0υ1 = −.45)
Time var 3.096 1.161

−2 log L = 1227.38, χ2
2 = 21.95, p < .001
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Estimated (subject-specific) probabilities across time
Random intercepts and trends model - placebo group

P (Yij = 1) =
1

1 + exp[−(5.93 + .29 Di − 1.40 Tj − 1.62 DiTj + υ̂0i + υ̂1i Tj)]
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Estimated (subject-specific) probabilities across time
Random intercepts and trends model - drug group

P (Yij = 1) =
1

1 + exp[−(5.93 + .29 Di − 1.40 Tj − 1.62 DiTj + υ̂0i + υ̂1i Tj)]
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Estimated Marginal Logits and Probabilities
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SAS NLMIXED code: random-trend model, in SCHZBINL.SAS
/* random trend logistic regression via GLIMMIX */

PROC GLIMMIX DATA=one METHOD=QUAD(QPOINTS=11) NOCLPRINT;

CLASS id;

MODEL imps79b(DESC) = tx sweek tx*sweek / SOLUTION DIST=BINARY LINK=LOGIT;

RANDOM INTERCEPT sweek / SUBJECT=id TYPE=UN GCORR SOLUTION;

ODS LISTING EXCLUDE SOLUTIONR; ODS OUTPUT SOLUTIONR=ebest2;

RUN;

/* logistic random-trend model via NLMIXED */

PROC NLMIXED DATA=one QPOINTS=11;

PARMS b0=5.39 b1=-0.03 b2=-1.50 b3=-1.02 v0=4.48 c01=0 v1=1;

z = b0 + b1*tx + b2*sweek + b3*tx*sweek + u0 + u1*sweek;

IF (imps79b=1) THEN

p = 1 / (1 + EXP(-z));

ELSE

p = 1 - (1 / (1 + EXP(-z)));

ll = LOG(p);

MODEL imps79b ∼ GENERAL(ll);

RANDOM u0 u1 ∼ NORMAL([0,0], [v0,c01,v1]) SUBJECT=id OUT=ebest2b;

ESTIMATE ’re corr’ c01/SQRT(v0*v1);

RUN;
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SAS IML code: SCHZBFIT2.SAS

TITLE1 ’nimh schizophrenia Data - estimated marginal probabilities’;

PROC IML;

/* results from nlmixed analysis: random intercept & trend model */;

/* covariate matrices for placebo and drug groups */;

x0 = { 1 0 0.00000 0,

1 0 1.00000 0,

1 0 1.73205 0,

1 0 2.44949 0};
x1 = { 1 1 0.00000 0.00000,

1 1 1.00000 1.00000,

1 1 1.73205 1.73205,

1 1 2.44949 2.44949};

/* nlmixed estimates of covariate effects and random effect variance-covariance matrix */;

beta = { 5.928, 0.287, -1.399, -1.615};
varu = {6.975 -2.111,

-2.111 3.096};

/* marginalization of person-specific estimates */;

pi = ATAN(1)*4;

nt = 4;

ivec = J(nt,1,1);

zmat = {1 0.00000,

1 1.00000,

1 1.73205,

1 2.44949};
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evec = (15/16)**2 * (pi**2)/3 * ivec;

/* nt by nt matrix with evec on the diagonal and zeros elsewhere */;

emat = DIAG(evec);

/* variance-covariance matrix of underlying latent variable */;

vary = zmat * varu * T(zmat) + emat;

/* marginalization factor */;

sdy = SQRT(VECDIAG(vary) / VECDIAG(emat));

z0 = (x0*beta) / sdy ;

z1 = (x1*beta) / sdy;

grp0 = 1 / ( 1 + EXP(0 - z0));

grp1 = 1 / ( 1 + EXP(0 - z1));

print ’random intercept and trend model’;

print ’marginalization of person-specific estimates’;

print ’marginal response probability for group 0’ grp0 [FORMAT=8.4];

print ’marginal response probability for group 1’ grp1 [FORMAT=8.4];
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Logistic GEE as marginal model

logitij = x′
ij β

• Working correlation of repeated observations
exchangeable (all are equal), AR(1), banded (m-dependent),
unstructured

• robust standard errors

• does not include any subject-specific (random) effects, does
not focus on heterogeneity
β0 = log odds of response among sub-population with x = 0
β = log odds ratio for response associated with unit changes
in x in the population of subjects

• exp(β) = ratio of population frequencies

– referred to as “population-averaged”
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NIMH Schizophrenia Study - Severity of Illness (N = 437)
Logistic Regression GEE - exchangeable correlation structure

GEE estimates se z p <
intercept 3.661 0.485 7.54 .001
Drug (0 = plc; 1 = drug) -0.381 0.521 -0.73 .46
Time (sqrt week) -1.094 0.252 -4.35 .001
Drug by Time -0.449 0.269 -1.67 .10

• non-significant drug by time interaction

• working corr based on data from 7 timepts (weeks 0 to 6)

• several have little data (wks 2, 4, 5) & wk 0 is near-constant

• very poorly estimated working correlation matrix

• analysis of 4 primary timepts and UN working corr
yields significant interaction (p < .047)
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Estimated Marginal Logits and Probabilities
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SAS GENMOD code: GEE logistic regression - SCHZGEE.SAS

DATA one; INFILE ’c:\mixdemo\schizx1.dat’;
INPUT id imps79 imps79b imps79o int tx week sweek txswk;

/* get rid of observations with missing values */

IF imps79 > -9;

/* get rid of weeks with very few observations */

IF week EQ 0 or week EQ 1 OR week EQ 3 OR week EQ 6;

PROC FORMAT;

VALUE imps79b 0 = ’le mild’ 1 = ’ge moderate’;

VALUE tx 0 = ’placebo’ 1 = ’drug’;

/* gee logistic regression model: unstructured */

PROC GENMOD DESCENDING;

CLASS id week;

MODEL imps79b = tx sweek txswk / LINK=LOGIT DIST=BIN;

REPEATED SUBJECT=id / WITHIN=week CORRW TYPE=UN;

RUN;
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Conclusions - mixed-effects logistic regression models useful
for incomplete longitudinal dichotomous data

• can handle subjects measured incompletely or at different
timepoints (missing data assumed MAR)

• degree of within-subjects variation on dichotomous outcome is
important to consider (might have 3-timepoint study where
90% of subjects have same response across timepoints)

• subject-specific (or conditional) interpretation of regression
coefficients

• generalizations to other categorical outcomes

– ordinal outcomes - mixed-effects ordinal logistic regression

∗ proportional odds model

∗ partial or non-proportional odds model

– nominal outcomes - mixed-effects nominal logistic
regression
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