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Advantages of Longitudinal Studies

• Economizes on subjects; subjects serve as own control

• Between-subject variation excluded from error

• Can provide more efficient estimators than cross-sectional designs
with same number and pattern of observations

• Can separate aging effects (changes over time within individuals)
from cohort effects (differences between subjects at baseline)
⇒ cross-sectional design can’t do this

• Can provide information about individual change
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Advantages of Mixed-effects Regression Models (MRM)

1. MRM explicitly models individual change across time

2. MRM more flexible in terms of repeated measures

(a) need not have same number of obs per subject

(b) time can be continuous, rather than a fixed set of points

3. Flexible specification of the covariance structure among repeated
measures ⇒ methods for testing specific determinants of this
structure

4. MRM can be extended to higher-level models ⇒ repeated
observations within individuals within clusters

5. Generalizations for non-normal data
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2-level model for longitudinal data

yi
ni×1

= Xi
ni×p

β
p×1

+ Zi
ni×r

υi
r×1

+ εi
ni×1

i = 1 . . . N individuals
j = 1 . . . ni observations for individual i

yi = ni × 1 response vector for individual i

Xi = ni × p design matrix for the fixed effects

β = p × 1 vector of unknown fixed parameters

Zi = ni × r design matrix for the random effects

υi = r × 1 vector of unknown random effects ∼ N (0,Συ)

εi = ni × 1 error vector ∼ N (0, σ2Ini)
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Random-intercepts Model
each subject is parallel to their group trend

y = T ime + Grp + (Grp× T ime) + Subj + Error

yij = β0 + β1Tij + β2Gi + β3(Gi × Tij) + υ0i + εij

υ0i ∼ N (0, σ2
υ) εij ∼ N (0, σ2)

5



Random Intercepts and Trend Model
subjects deviate in terms of both intercept & slope

y = T ime + Grp + (G × T ) + Subj + (S × T ) + Error

yij = β0 + β1Tij + β2Gi + β3(Gi × Tij) + υ0i + υ1iTij + εij




υ0i
υ1i


 ∼ N








0
0


 ,




σ2
υ0

συ0υ1

συ0υ1 σ2
υ1








εij ∼ N (0, σ2)
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Example of random intercept and trend model
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Within-Unit / Between-Unit representation

Within-subjects model - level 1 (j = 1, . . . , ni)

yij = b0i + b1iX1ij
+ . . . + bp1iXp1ij

+ εij

Between-subjects model - level 2 (i = 1, . . . , N)

b0i = β0 + β′
0(2)xi + υ0i

b1i = β1 + β′
1(2)xi + υ1i

. = . . .

bp1i = βp1 + βp1(2)xi

⇒ “slopes as outcomes” model

β′ =




β0 β1 . . . βp1 β′
0(2) β′

1(2) . . . β′
p1(2)

intercept level-1 level-2 cross-level
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Matrix form of model for individual i




yi1
yi2

. . .
yini




yi
ni×1

=




1 T imei1 Groupi Grpi × Ti1
1 T imei2 Groupi Grpi × Ti2
. . . . . . . . . . . .
1 T imeini

Groupi Grpi × Tini




Xi
ni×p




β0
β1
β2
β3




β
p×1

+




1 T imei1
1 T imei2
. . . . . .
1 T imeini




Zi
ni×r




υ0i
υ1i




υi
r×1

+




εi1
εi2
. . .
εini




εi
ni×1

Time might be years or months, and could differ for each subject
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The conditional variance-covariance matrix is now of the form:

• Σyi
= ZiΣυZ

′
i + σ2Ini

For example, with r = 2, n = 3, and Z′
i =




1 1 1
0 1 2




the conditional variance-covariance Σyi
= σ2Ini+




σ2
υ0

σ2
υ0

+ συ0υ1 σ2
υ0

+ 2συ0υ1

σ2
υ0

+ συ0υ1 σ2
υ0

+ 2συ0υ1 + σ2
υ1

σ2
υ0

+ 3συ0υ1 + 2σ2
υ1

σ2
υ0

+ 2συ0υ1 σ2
υ0

+ 3συ0υ1 + 2σ2
υ1

σ2
υ0

+ 4συ0υ1 + 4σ2
υ1




• variances and covariances change across time

More general models allow autocorrelated errors, εi ∼ N (0, σ2Ωi),
where Ω might represent AR or MA process
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Example: Drug Plasma Levels and Clinical Response

Riesby and associates (Riesby et al., 1977) examined the
relationship between Imipramine (IMI) and Desipramine (DMI)
plasma levels and clinical response in 66 depressed inpatients
(37 endogenous and 29 non-endogenous)

Drug-Washout
day0 day7 day14 day21 day28 day35
wk 0 wk 1 wk 2 wk 3 wk 4 wk 5

Hamilton
Depression HD1 HD2 HD3 HD4 HD5 HD6

Diagnosis Dx

IMI IMI3 IMI4 IMI5 IMI6

DMI DMI3 DMI4 DMI5 DMI6

n 61 63 65 65 63 58
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outcome variable Hamilton Depression Scores (HD)

independent variables Dx, IMI and DMI

• Dx - endogenous (=1) or non-endogenous (=0)

• IMI (imipramine) drug-plasma levels (µg/l)

– antidepressant given 225 mg/day, weeks 3-6

• DMI (desipramine) drug-plasma levels (µg/l)

– metabolite of imipramine
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Descriptive Statistics

Observed HDRS Means, n, and sd
Washout
wk 0 wk 1 wk 2 wk 3 wk 4 wk 5

Endog 24.0 23.0 19.3 17.3 14.5 12.6
n 33 34 37 36 34 31

Non-Endog 22.8 20.5 17.0 15.3 12.6 11.2
n 28 29 28 29 29 27

pooled sd 4.5 4.7 5.5 6.4 7.0 7.2
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Correlations: n = 46 and 46 ≤ n ≤ 66

wk 0 wk 1 wk 2 wk 3 wk 4 wk 5
week 0 1.0 .49 .41 .33 .23 .18
week 1 .49 1.0 .49 .41 .31 .22
week 2 .42 .49 1.0 .74 .67 .46
week 3 .44 .51 .73 1.0 .82 .57
week 4 .30 .35 .68 .78 1.0 .65
week 5 .22 .23 .53 .62 .72 1.0
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• increasing variance across time

• general linear decline over time

14



Examination of HD across all weeks




HDi1

HDi2

. . .
HDini




yi

ni×1

=




1 WEEKi1

1 WEEKi2

. . . . . .
1 WEEKini




X i

ni×p



β0

β1




β
p×1

+




1 WEEKi1

1 WEEKi2

. . . . . .
1 WEEKini




Z i

ni×r



υ0i

υ1i




υi

r×1

+




εi1

εi2

. . .
εini




εi

ni×1

where max(ni) = 6, and X ′
i = Z ′

i =



1 1 1 1 1 1
0 1 2 3 4 5
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Within-subjects and between-subjects components

Within-subjects model

HDij = b0i + b1iT imeij + Eij

yij = b0i + b1ixij + εij

i = 1 . . . 66 patients
j = 1 . . . ni observations (max = 6) for patient i

b0i = week 0 HD level for patient i
b1i = weekly change in HD for patient i

Between-subjects models

b0i = β0 + υ0i

b1i = β1 + υ1i

β0 = average week 0 HD level
β1 = average HD weekly improvement
υ0i = individual deviation from average intercept
υ1i = individual deviation from average improvement
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parameter ML estimate se z p <

β0 23.58 0.55 43.22 .0001
β1 -2.38 0.21 -11.39 .0001

σ2
υ0

12.63 3.47
συ0υ1 -1.42 1.03
σ2

υ1
2.08 0.50

σ2 12.22 1.11

log L = −1109.52

χ2
2 = 66.1, p < .0001 for H0 : συ0υ1 = σ2

υ1
= 0

συ0υ1
as corr between intercept and slope = -0.28

• Wald tests are dubious for variance parameters, likelihood-ratio tests are
preferred (though divide p-value by 2)

• Wald z-statistics sometimes expressed as χ2
1 (by squaring z-value)
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Observed and estimated means (= Xβ̂)
wk 0 wk 1 wk 2 wk 3 wk 4 wk 5

n 61 63 65 65 63 58
obs 23.44 21.84 18.31 16.42 13.62 11.95
est 23.58 21.21 18.82 16.45 14.07 11.69
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Obs. (pairwise) and est. variance-covariance matrix

Σy =




20.55

10.50 22.07

10.20 12.74 30.09

9.69 12.43 25.96 41.15

7.17 10.10 25.56 36.54 48.59

6.02 7.39 18.25 26.31 32.93 52.12




Σ̂y = ZΣ̂υZ
′ + σ̂2I

=




24.85

11.21 24.08

9.79 12.52 27.48

8.37 13.18 18.00 35.03

6.95 13.84 20.73 27.63 46.74

5.53 14.50 23.47 32.44 41.41 62.60




Z ′ =




1 1 1 1 1 1

0 1 2 3 4 5


 Σ̂υ =




12.63 −1.42

−1.42 2.08




note: from random-int model: σ̂2
υ = 16.16 and σ̂2 = 19.04
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Empirical Bayes estimates of Subject Trends
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SAS MIXED code - RIESBYM.SAS

TITLE1 ’analysis of riesby data - hdrs scores across time’;

DATA one; INFILE ’c:\mixdemo\riesby.dat’;
INPUT id hamd intcpt week endog endweek ;

PROC FORMAT;

VALUE endog 0=’nonendog’ 1=’endog’;

VALUE week 0=’week 0’ 1=’week 1’ 2=’week 2’ 3=’week 3’ 4=’week 4’ 5=’week 5’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT /SUB=id TYPE=UN G;

TITLE2 ’random intercepts model: compound symmetry structure’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;

TITLE2 ’random trend model’;
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SAS MIXED code - RIESBYM2.SAS

TITLE1 ’analysis of riesby data - empirical bayes estimates’;

DATA one; INFILE ’c:\mixdemo\riesby.dat’;
INPUT id hamd intcpt week endog endweek ;

PROC FORMAT;

VALUE endog 0=’nonendog’ 1=’endog’;

VALUE week 0=’week 0’ 1=’week 1’ 2=’week 2’ 3=’week 3’ 4=’week 4’ 5=’week 5’;

PROC MIXED METHOD=ML;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G S;

ODS LISTING EXCLUDE SOLUTIONR; ODS OUTPUT SOLUTIONR=randest;

TITLE2 ’random trend model’;

/* print out the estimated random effects dataset */

PROC PRINT DATA=randest;
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/* get a printout of the data in multivariate form */

PROC SORT DATA=one; BY id;

DATA t0;SET one; IF week=0; hamd 0 = hamd;

DATA t1;SET one; IF week=1; hamd 1 = hamd;

DATA t2;SET one; IF week=2; hamd 2 = hamd;

DATA t3;SET one; IF week=3; hamd 3 = hamd;

DATA t4;SET one; IF week=4; hamd 4 = hamd;

DATA t5;SET one; IF week=5; hamd 5 = hamd;

DATA comp (KEEP=id hamd 0-hamd 5); MERGE t0 t1 t2 t3 t4 t5; BY id;

PROC PRINT DATA=comp; VAR id hamd 0-hamd 5;
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/* extract the intercepts and slopes for each person */

/* and compute the estimated hamd values across time */

PROC SORT DATA=randest; BY id;

DATA randest2 (KEEP=id intdev slopedev int slope hdest 0-hdest 5);

ARRAY y(2) intdev slopedev;

DO par = 1 TO 2;

SET randest; BY id;

y(par) = ESTIMATE;

IF par = 2 THEN DO;

int = 23.5769 + intdev;

slope = -2.3771 + slopedev;

hdest 0 = int;

hdest 1 = int + slope;

hdest 2 = int + 2*slope;

hdest 3 = int + 3*slope;

hdest 4 = int + 4*slope;

hdest 5 = int + 5*slope;

END;

IF LAST.id THEN RETURN;

END;

24



PROC PRINT DATA=randest2; VAR id hdest 0-hdest 5;

PROC PLOT DATA=randest2;

PLOT intdev * slopedev;

PLOT int * slope;

TITLE2 ’plot of individual intercepts versus slopes’;

RUN;
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Examination of HD across all weeks by diagnosis




HDi1

HDi2

. . .
HDini




yi

ni×1

=




1 WEEKi1 Dxi Dxi ∗ Wki1

1 WEEKi2 Dxi Dxi ∗ Wki2

. . . . . . . . . . . .
1 WEEKini

Dxi Dxi ∗ Wkini




X i

ni×p




β0

β1

β2

β3




β
p×1

+




1 WEEKi1

1 WEEKi2

. . . . . .
1 WEEKini




Z i

ni×r



υ0i

υ1i




υi

r×1

+




εi1

εi2

. . .
εini




εi

ni×1

where max(ni) = 6, Z ′
i =



1 1 1 1 1 1
0 1 2 3 4 5


 , Dxi =





0 for NE
1 for E
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Within-subjects and between-subjects components

Within-subjects model

HDij = b0i + b1iT imeij + Eij

b0i = week 0 HD level for patient i
b1i = weekly change in HD for patient i

Between-subjects models

b0i = β0 + β2Dxi + υ0i

b1i = β1 + β3Dxi + υ1i

β0 = average week 0 HD level for NE patients (Dxi = 0)
β1 = average HD weekly improvement for NE patients (Dxi = 0)
β2 = average week 0 HD difference for E patients
β3 = average HD weekly improvement difference for endogenous patients
υ0i = individual deviation from average intercept
υ1i = individual deviation from average improvement
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parameter ML estimate se z p <

NE int β0 22.48 0.79 28.30 .0001
NE slope β1 -2.37 0.31 -7.59 .0001
E int diff β2 1.99 1.07 1.86 .063

E slope diff β3 -0.03 0.42 -0.06 .95

σ2
υ0

11.64 3.53
συ0υ1

-1.40 1.00
σ2

υ1
2.08 0.50

σ2 12.22 1.11

log L = −1107.47

χ2
2 = 4.1, p ns, compared to model with β2 = β3 = 0

σβ0β1 as corr between intercept and slope = -0.29
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Riesby data - model fit by diagnosis
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SAS MIXED code - in RIESBYM.SAS

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamd = week endog endweek /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;

TITLE2 ’random trend model with group effects’;

RUN;
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Time-varying Covariates - WS and BS effects

Section 4.5.2 in Hedeker & Gibbons (2006), Longitudinal Data
Analysis, Wiley.
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Examination of HD across 4 weeks by plasma drug-levels




HDi1

HDi2

. . .
HDini




yi

ni×1

=




1 WEEKi1 lnIMIi1 lnDMIi1

1 WEEKi2 lnIMIi2 lnDMIi2

. . . . . . . . . . . .
1 WEEKini

lnIMIini
lnDMIini




X i

ni×p




β0

β1

β2

β3




β
p×1

+




1 WEEKi1

1 WEEKi2

. . . . . .
1 WEEKini




Zi

ni×r



υ0i

υ1i




υi

r×1

+




εi1

εi2

. . .
εini




εi

ni×1

where max(ni) = 4, and Z ′
i =



1 1 1 1
0 1 2 3
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Within-subjects and between-subjects components

Within-subjects model

HDij = b0i + b1iTij + b2i ln IMIij + b3i ln DMIij + Resij

b0i = week 2 HD level for patient i with both ln IMI and ln DMI = 0
b1i = weekly change in HD for patient i
b2i = change in HD due to ln IMI
b3i = change in HD due to ln DMI

Between-subjects models

b0i = β0 + υ0i

b1i = β1 + υ1i

b2i = β2

b3i = β3
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β0 = average week 2 HD level for drug-free patients
β1 = average HD weekly improvement
β2 = average HD difference for unit change in ln IMI
β3 = average HD difference for unit change in ln DMI
υ0i = individual intercept deviation from model
υ1i = individual slope deviation from model

Here, week 2 is the actual study week (i.e., one week after the drug washout
period), which is coded as 0 in this analysis of the last four study timepoints
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parameter ML estimate se z p <

int β0 21.37 3.89 5.49 .0001
slope β1 -2.03 0.28 -7.15 .0001

ln IMI β2 0.60 0.85 0.71 .48
ln DMI β3 -1.20 0.63 -1.90 .06

σ2
υ0

24.83 5.75

συ0υ1 -0.72 1.72

σ2
υ1

2.73 0.93

σ2 10.46 1.35

log L = −751.23

συ0υ1 as corr between intercept and slope = -0.09
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parameter estimate se p <

HD total score

intercept β0 10.97 4.44 .013

slope β1 -1.99 0.28 .0001

Baseline HD β2 0.54 0.14 .0001

ln IMI β3 0.54 0.78 .49

ln DMI β4 -1.63 0.59 .006

σ2
υ0

17.82 4.55

συ0υ1 0.08 1.53

σ2
υ1

2.74 0.94

σ2 10.50 1.36

HD change from baseline

intercept β0 1.52 3.74 ns

slope β1 -1.97 0.28 .0001

ln IMI β3 0.63 0.82 ns

ln DMI β4 -1.97 0.60 .001

σ2
υ0

20.50 5.01

συ0υ1 0.84 1.58

σ2
υ1

2.78 0.94

σ2 10.53 1.36
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Correlation between HD scores
and plasma levels (ln units)

HD total score
week 2 week 3 week 4 week 5

IMI -0.034 -0.034 -0.003 -0.189
DMI -0.178 -0.075 -0.250∗ -0.293∗

HD change from baseline
week 2 week 3 week 4 week 5

IMI -0.025 -0.100 -0.034 -0.250
DMI -0.350∗ -0.274∗ -0.348∗ -0.401∗

∗p < 0.05
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Model with time-varying covariate Xij

Within-subjects model

Yij = b0i + b1iTij + b2iXij + Eij

Between-subjects models
b0i = β0 + υ0i

b1i = β1 + υ1i

b2i = β2

Is the effect of Xij purely within-subjects? What about

Xij = Xij + X̄i − X̄i

= X̄i + (Xij − X̄i)

X̄i is between-subjects component of X
Xij − X̄i is within-subjects component of X
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Time-varying covariate effects: purely between-subjects
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Time-varying covariate effects: purely within-subjects
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Model with decomposition of time-varying covariate Xij

Within-subjects model

Yij = b0i + b1iTij + b2i(Xij − X̄i) + Eij

Between-subjects models

b0i = β0 + βBSX̄i + υ0i

b1i = β1 + υ1i

b2i = βWS

Notice, effect of X is now βBSX̄i + βWS(Xij − X̄i)

βBS = effect of X̄i on Ȳi BS or “cross-sectional”

βWS = effect of (Xij − X̄i) on (Yij − Ȳi) WS or “longitudinal”
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Model with only Xij assumes equal BS and WS effects
(βBS = βWS)

suppose βBS = βWS = β∗, then in the model with decomposition,

the effect of Xij = β∗X̄i + β∗(Xij − X̄i) = β∗Xij

⇒ precisely what the model with only Xij assumes

Equal WS and BS effects of Xij?

• can be a dubious assumption

• needs to be tested (by comparing two models via LR test)

• there is no guarantee that βBS and βWS even agree on sign

42



Time-varying covariate effects: opposite sign WS and BS effects
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parameter estimate se p <
assuming BS=WS drug effects
intercept 1.52 3.74 ns
slope -1.97 0.28 .0001
ln IMI 0.63 0.82 ns
ln DMI -1.97 0.60 .001

deviance = 1498.8

relaxing BS=WS drug effects
intercept 7.26 5.02 ns
slope -2.03 0.29 .0001
ln IMI BS -0.28 1.00 ns
ln DMI BS -2.39 0.79 .003
ln IMI WS 2.37 1.46 ns
ln DMI WS -1.74 1.00 ns

deviance = 1495.8

X2
2 = 1498.8 − 1495.8 = 3 ⇒ Accept H0 : βBS = βWS
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SAS MIXED code - RIESBSWS.SAS

TITLE1 ’partitioning BS and WS effects of drug levels’;

DATA one; INFILE ’c:\mixdemo\riesbyt4.dat’;
INPUT id hamdelt intcpt week sex endog lnimi lndmi ;

PROC SORT; BY id;

PROC MEANS NOPRINT; CLASS id; VAR lnimi lndmi;

OUTPUT OUT = two MEAN = mlnimi mlndmi;

DATA three; MERGE one two; BY id;

lnidev = lnimi - mlnimi; lnddev = lndmi - mlndmi;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamdelt = week lnimi lndmi /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;

TITLE2 ’assuming bs=ws drug effects’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamdelt = week mlnimi mlndmi lnidev lnddev /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;

TITLE2 ’relaxing bs=ws drug effects’;
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