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Advantages of Longitudinal Studies

e Ficonomizes on subjects; subjects serve as own control
e Between-subject variation excluded from error

e Can provide more efficient estimators than cross-sectional designs
with same number and pattern of observations

e Can separate aging effects (changes over time within individuals)
from cohort effects (differences between subjects at baseline)
= cross-sectional design can’t do this

e Can provide information about individual change



Advantages of Mixed-effects Regression Models (MRM)

1. MRM explicitly models individual change across time
2. MRM more flexible in terms of repeated measures

(a) need not have same number of obs per subject
(b) time can be continuous, rather than a fixed set of points
3. Flexible specification of the covariance structure among repeated

measures = methods for testing specific determinants of this
structure

4. MRM can be extended to higher-level models = repeated
observations within individuals within clusters

5. Generalizations for non-normal data



2-level model for longitudinal data

yi = Xi B + Z; vi + ¢

n; <1 n;Xp pxl1 n; Xr rxl n; <1

¢ =1...N individuals
7 =1...n; observations for individual ¢
Yy, = n; X 1 response vector for individual ¢
X, = n; X p design matrix for the fixed effects
B = p x 1 vector of unknown fixed parameters
Z; = n; X r design matrix for the random effects
v; = r x 1 vector of unknown random effects ~ N(0, X))

e; = n; X 1 error vector ~ N (0, 02In2.)



Random-intercepts Model
each subject is parallel to their group trend
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y = Time + Grp + (Grp x Time) + Subj + Error
yij = Bo+ 51155 + BoGi + B3(Gy x Ti5) + vo; + €5

voi ~ N(0,05) g5 ~ N(0,07)
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Random Intercepts and Trend Model
subjects deviate in terms of both intercept € slope
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Dependent Variable

Time

y = Time+ Grp+ (G X T) + Subj + (S x T) + Error

Yij = By + ﬁlT’L] + (oG + 53<GZ X TZ]) TV T UliTZj + =]
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Example of random intercept and trend model

Rise In Teen Sexual Activity Comes As Surprise To Area Teen

Sexual Activity Among Teens

0ol P e G s
Lormal teens]

12 e

Number of sexual acts per year
fa)

0 - v B T i
1999 2000 2001 2002
Left: Tom Elis, who was surprised by statistics

showing that other teens are having sex (above).

SALEM, OR—The Alan Guttmacher
Institute released a report Friday that
showed a dramatic increase in teen sexual
activity, a finding that surprised policy-
makers, public-health professionals, and
17-year-old Tom Ellis.

“So, more teens are having sex, are
they?” Ellis asked Manday. “Well, I'm not
sure where those guys got all their data,
but it sure wasn’t from me.”

Ellis, a senior this fall at Sprague High
School in Salem, learned of the trend
while watching television at home Satur-
day, as he does most weekend nights. A
20/20 story titled “The Teen Sex Epidemic”

see TEEN page 8



Within-Unit / Between-Unit representation
Within-subjects model - level 1 (5 =1,...,n;)

Yij = bo; + blinzj + ...+ bpliXplij T €

Between-subjects model - level 2 (i =1,..., N)

= 6o + Bo®i + v
bii = 01 + By + vy

bplz'

Bpr + Bpro) i

= “slopes as outcomes” model

By

intercept

B Bp1

level-1
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"

level 2
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cross—level



Matrix form of model for individual ?
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Time might be years or months, and could differ for each subject
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The conditional variance-covariance matrix is now of the form:

oSy, = Z,5,Z}; + 0’y

For example, with r =2, n = 3, and Z} =

111
012

the conditional variance-covariance 2qy. = 0?1 n;+

2
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O'%O + 30vguy + 20,01
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0% + 2(7’00’01

O'%O + 30uyvy + 2(7%1

O'%O + 4oy, + 40,%1 _

e variances and covariances change across time

More general models allow autocorrelated errors, €; ~ N (0, O'QQZ')
where €2 might represent AR or MA process
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Example: Drug Plasma Levels and Clinical Response

Riesby and associates (Riesby et al., 1977) examined the
relationship between Imipramine (IMI) and Desipramine (DMTI)
plasma levels and clinical response in 66 depressed inpatients
(37 endogenous and 29 non-endogenous)

Drug-Washout
day0  day7 dayld day2l day28 day35
wk 0wkl wk2 wk3 wk4 wkbd

Hamilton
Depression HD; HDs, HDy HD, HDs HDxg

Diagnosis Dz
IMI IMI; IMI, IMIs IMIg

DMI DMIs DMIy DMIs DMIg
n 61 63 65 65 63 53
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outcome variable Hamilton Depression Scores (H D)
independent variables Dx, IMI1 and DMI

e Dz - endogenous (=1) or non-endogenous (=0)
e /M1 (imipramine) drug-plasma levels (ug/1)

— antidepressant given 225 mg/day, weeks 3-6
e DM (desipramine) drug-plasma levels (ug/1)

— metabolite of imipramine

11



Descriptive Statistics

Observed HDRS Means, n, and sd

Washout
wk 0 wki1
Endog 24.0  23.0
n 33 34
Non-Endog  22.8  20.5
n 28 29
pooled sd 4.5 4.7

wk 2 wk3 wk4 wk5
19.3 173 145 126
37 36 34 31
170 153 126 11.2
28 29 29 27
5.5 0.4 7.0 7.2
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Correlations: n = 46 and 46 <n < 66

wk(O0 wkl wk2 wka3

wk 4

week ( 1.0 49 41 33
week 1 .49 1.0 49 41
week 2 42 .49 1.0 T4
week 3 .44 b1 .73 1.0
week 4 .30 35 .68 78
week 5 .22 .23 .53 .62
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Riesby Data - Spaghetti plot (n=66)

Hamilton Depression Scores across Time

40

30 =

20 -

10
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WEEK

® INcreasing variance across time

e general linear decline over time
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Examination of HD across all weeks

(HD;, 1 WEEK; | | B
HDp | _ |1 WEEK;s | | b
Y; X P
nix1 i Xp px1

1 WEEK; | [w il

1 WEFEK; U1 €i2

n -
Z; U; €
n; Xr rx1 TLin
B o (111111
Wheremax(ni)—G, and Xz‘—Zz‘_lQ 1 2 345]
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Within-subjects and between-subjects components

Within-subjects model
HDZ']‘ = b()z' -+ bliTz'meZ-j + Ez'j
Yij = boi + 0z + €y

1...66 patients
1...n; observations (max = 6) for patient ¢

j
bp; = week 0 HD level for patient ¢
b1i weekly change in HD for patient ¢

Between-subjects models

boi = o + vy
bii = (1 + vy

By = average week 0 HD level

31 average H D weekly improvement

individual deviation from average intercept

vy; = individual deviation from average improvement

>
=
I
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parameter ML estimate se p <
Ioh 23.58 0.55 43.22 .0001
31 -2.38 0.21 -11.39 .0001
ago 12.63 3.47
Tvgv; -1.42 1.03
o5 208 050
o* 12.22 111

log L = —1109.52

X5 = 66.1,p < .0001 for Hy: oy, = ggl — ()

Tugu; @8 cOIT between intercept and slope = -0.28

e Wald tests are dubious for variance parameters, likelihood-ratio tests are
preferred (though divide p-value by 2)

e Wald z-statistics sometimes expressed as x# (by squaring z-value)
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Riesby Data - Estimated Average Trend

Hamilton Depression Scores across Time

40

30 -

20 -

-10

-1 0 1 2 3 4 5

VWeek

Observed and estimated means (= XB)
wk 0 wk 1 wk 2 wk 3 wk 4

wk 5

n 61 63 65 65 63
obs 2344  21.84 1831 1642  13.62
est 2358 2121 1882 1645  14.07
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Obs. (pairwise) and est. variance-covariance matrix

1 20.55

10.50 22.07

10.20 12.74 30.09

9.69 12.43 25.96 41.15

7.17 10.10 25.56 36.54 48.59
6.02 7.39 18.25 26.31 32.93 52.12

Sy = ZX,Z' +6°1
1 24.85

11.21 24.08

9.79 12.52 27.48

8.37 13.18 18.00 35.03

6.95 13.84 20.73 27.63 46.74

5.53 14.50 23.47 32.44 41.41 62.60

-

HH

] 231):[ 12.63 —1.42

111111
012345 —142 208

note: from random-int model: 62 = 16.16 and 6* = 19.04
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Empirical Bayes estimates of Subject Trends

Intercept

Riesby Data - Estimated Random Effects

HDRS Intercepts and Slopes
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SAS MIXED code - RIESBYM.SAS

TITLE1 ’analysis of riesby data - hdrs scores across time’;
DATA one; INFILE ’c:\mixdemo\riesby.dat’;
INPUT id hamd intcpt week endog endweek ;

PROC FORMAT;
VALUE endog O=’nonendog’ 1=’endog’;
VALUE week 0=’week 0’ 1=’week 1’ 2=’week 2’ 3=’week 3’ 4=’week 4’ b=’week 5’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT /SUB=id TYPE=UN G;

TITLE2 ’random intercepts model: compound symmetry structure’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;
TITLE2 ’random trend model’;
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SAS MIXED code - RIESBYM2.SAS

TITLE1 ’analysis of riesby data - empirical bayes estimates’;
DATA one; INFILE ’c:\mixdemo\riesby.dat’;
INPUT id hamd intcpt week endog endweek ;

PROC FORMAT;
VALUE endog O=’nonendog’ 1=’endog’;
VALUE week 0=’week 0’ 1=’week 1’ 2=’week 2’ 3=’week 3’ 4=’week 4’ b=’week 5’;

PROC MIXED METHOD=ML;

CLASS id;

MODEL hamd = week /SOLUTION;

RANDOM INTERCEPT week /SUB=id TYPE=UN G S;

ODS LISTING EXCLUDE SOLUTIONR; ODS OUTPUT SOLUTIONR=randest;
TITLE2 ’random trend model’;

/* print out the estimated random effects dataset */
PROC PRINT DATA=randest;
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/* get a printout of the data in multivariate form x/
PROC SORT DATA=one; BY id;

DATA tO;SET one; IF week=0; hamd_ O = hamd;
DATA t1;SET one; IF week=1; hamd_1 = hamd;
DATA t2;SET one; IF week=2; hamd_2 = hamd;
DATA t3;SET one; IF week=3; hamd_3 = hamd;
DATA t4;SET one; IF week=4; hamd 4 = hamd;
DATA t5;SET one; IF week=5; hamd_5 = hamd;

DATA comp (KEEP=id hamd O-hamd 5); MERGE tO t1 t2 t3 t4 tb5; BY id;

PROC PRINT DATA=comp; VAR id hamd_O-hamd_5;
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/* extract the intercepts and slopes for each person */

/* and compute the estimated hamd values across time */

PROC SORT DATA=randest; BY id;

DATA randest2 (KEEP=id intdev slopedev int slope hdest O-hdest 5);

ARRAY y(2) intdev slopedev;
DO par = 1 TO 2;
SET randest; BY id;
y(par) = ESTIMATE;
IF par = 2 THEN DO;
int = 23.5769 + intdev;
slope = -2.3771 + slopedev;
hdest_ O = int;
hdest_1 = int + slope;
hdest 2 = int + 2*slope;
hdest_3 = int + 3*slope;
hdest 4 = int + 4x*slope;
hdest .5 = int + 5*slope;
END;
IF LAST.id THEN RETURN;
END;
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PROC PRINT DATA=randest2; VAR id hdest O-hdest 5;

PROC PLOT DATA=randest2;

PLOT intdev * slopedev;

PLOT int * slope;

TITLE2 ’plot of individual intercepts versus slopes’;
RUN;
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Examination of HD across all weeks by diagnosis

N e B,
HD,,, | 1 WEEK,, Dz, Dx;* Wk, | |55
n;x1 Nn;Xp px1
1 WEFEK; | [ g1
1 WEEKZQ U1 E42
+ +
1 WEEK,,  Ein, |
Zz’ V; E;
n; Xr rx1 n; x1

0 for NE
]’ Dxi_{l for B

NESG
L

where max(n;) = 6

)




Within-subjects and between-subjects components

Within-subjects model

HDZ‘]‘ — bOi + bliTz'meij + Eij

bp; = week 0 HD level for patient ¢
bi; = weekly change in HD for patient 2

Between-subjects models

boi = Bo + BaDz;i + vy,
bii = 1+ BsDx; + vy

By = average week 0 H D level for NE patients (Dz; = 0)

B1 = average H D weekly improvement for NE patients (Dz; = 0)
3y = average week 0 HD difference for E patients
(33 = average HD weekly improvement difference for endogenous patients

vg; = individual deviation from average intercept
vy; = individual deviation from average improvement
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parameter ML estimate se 2 p <

NE int (3, 29.48 0.79 2830  .0001
NE slope 3, 22.37 0.31 -7.59 0001
E int diff 3, 1.99 1.07 1.86 063

E slope diff 35 -0.03 0.42 -0.06 95
ago 11.64 3.53
Tugoy ~1.40 1.00
agl 2.08 0.50
o2 12.29 1.11

log L = —1107.47

X5 = 4.1, p ns, compared to model with By = B3 =0

05,8, as corr between intercept and slope = -0.29
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Riesby data - model fit by diagnosis

Riesby data — Hamilton Depression Scores
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SAS MIXED code - in RIESBYM.SAS

PROC MIXED METHOD=ML COVTEST;

CLASS 1id;

MODEL hamd = week endog endweek /SOLUTION;
RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;
TITLE2 ’random trend model with group effects’;
RUN;
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Time-varying Covariates - WS and BS effects

Section 4.5.2 in Hedeker & Gibbons (2006), Longitudinal Data
Analysis, Wiley:.
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Examination of HD across 4 weeks by plasma drug-levels

HD;

Y,

TLZ'><1

where max(n;) = 4, and Z = l
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Within-subjects and between-subjects components

Within-subjects model
HDZ'j = bo; + blz'Tz'j + by; In [M[z'j + bs; In DM[Z'j + RBSZ']'

by; = week 2 HD level for patient ¢ with both In /M1 and In DMI = 0
weekly change in HD for patient ¢

change in HD due to In IM 1

bs; = change in HD due to In DM I

S O
DD
. ~.
Il

Between-subjects models

boi = Bo + voi
bii = B1+ vu
bai = 3

b3i: 3

33



Bo
B
32
B3
Vi
U1

average week 2 H D level for drug-free patients
average H D weekly improvement

average H D difference for unit change in In IM 1
average H D difference for unit change in In DM [
individual intercept deviation from model
individual slope deviation from model

Here, week 2 is the actual study week (i.e., one week after the drug washout
period), which is coded as 0 in this analysis of the last four study timepoints
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parameter ML estimate se 2z p<

int By 21.37 3.89 5.49 .0001
slope (31 -2.03 0.28 -7.15 .0001
InIMI (35 0.60 0.85 0.71 .48
In DM (33 -1.20 0.63 -1.90 .06

o7, 24.83 575
Toguy 072 1.72
o7, 273 0.93
o? 1046 1.35

log L = —751.23

Tuguy @8 corr between intercept and slope = -0.09
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parameter estimate se p<

HD total score

intercept [ 10.97 444 013
slope (31 -1.99 0.28 .0001
Baseline HD (s 0.54 0.14 .0001
In IMI (5 0.54 0.78 .49
In DMI 5, -1.63 0.59 .006
oo 17.82 4.55
T oy 0.08 1.53
op 2.74 0.94
o? 10.50 1.36

HD change from baseline
intercept [ 1.52 3.74 ns
slope (31 -1.97 0.28 .0001
In IMI (3 0.63 0.82 ns
In DMI 5, -1.97 0.60 .001
050 20.50 5.01
T oy 0.84 1.58
o 2.78 0.94

o’ 10.53 1.36
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Correlation between HD scores

and plasma levels (In units)

HD total score
week 2 week 3 week 4 week 5

IMI
DMI

-0.034 -0.034 -0.003 -0.189
-0.178 -0.075 -0.250* -0.293*

HD change from baseline
week 2 week 3 week 4 week 5

IMI
DMI

-0.025 -0.100 -0.034 -0.250
-0.350* -0.274* -0.348% -0.401%

*p < 0.05
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Model with time-varying covariate XZ-]-

Within-subjects model
Yij = bo; + 015155 + b2 X5 + B

Between-subjects models

boi = Bo + vo;
b1; = 01+ vy;
bo; = 9

Is the effect of X;; purely within-subjects?” What about
Xz'j = )_(z'j + X; — Xf
= X+ (Xij = Xj)
X is between-subjects component of X
X;; — X, is within-subjects component of X
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Time-varying covariate effects: purely between-subjects
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Time-varying covariate effects: purely within-subjects
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Model with decomposition of time-varying covariate XZ-]-

Within-subjects model

Yij = bo; + 01155 + boi( Xy — Xj) + B

Between-subjects models

boi = By + BpsX; + vy
b1; = B + vy,
boi = Bws

Notice, effect of X is now BpgX; + Bws(Xij — Xi)

Bpg = effect of X;onY; BSor “cross-sectional”

Bwwg = effect of (XZ-]- — X;) on (YZ-]- —Y;) WS or “longitudinal”
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Model with only X;; assumes equal BS and W effects
(BBs = Bws)

suppose Bpg = Py g = B, then in the model with decomposition,

the effect of X;; = B*X; + 5*(Xz'j - X;) = 5*Xij

= precisely what the model with only X;; assumes

Equal W5 and BS effects of X;;7

e can be a dubious assumption
e needs to be tested (by comparing two models via LR test)

e there is no guarantee that Sgg and (7 g even agree on sign
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Time-varying covariate effects: opposite sign WS and BS effects
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parameter estimate se p <
assuming BS=WS drug effects

intercept 1.52 3.74  ns
slope -1.97 0.28 .0001
In IMI 0.63 0.82  ns
In DMI -1.97 0.60 .001

deviance = 1498.8
relaxing BS=WYS drug effects

intercept 7.26 5.02 ns
slope -2.03 0.29 .0001
In IMI BS -0.28 1.00  ns

In DMI BS -2.39 0.79 .003
In IMI WS 2.37 1.46 ns
In DMI WS -1.74 1.00 ns

deviance = 1495.8

X3 = 1498.8 — 1495.8 =3 = Accept Hy : Bps = Bw's
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SAS MIXED code - RIESBSWS.SAS

TITLE1l ’partitioning BS and WS effects of drug levels’;
DATA one; INFILE ’c:\mixdemo\riesbyt4.dat’;
INPUT id hamdelt intcpt week sex endog lnimi Ilndmi ;

PROC SORT; BY id;
PROC MEANS NOPRINT; CLASS id; VAR 1lnimi 1lndmi;
OUTPUT OUT = two MEAN = mlnimi mlndmi;

DATA three; MERGE one two; BY id;
lnidev = 1nimi - mlnimi; 1lnddev = lndmi - mlndmi;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamdelt = week 1lnimi 1lndmi /SOLUTION;
RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;
TITLE2 ’assuming bs=ws drug effects’;

PROC MIXED METHOD=ML COVTEST;

CLASS id;

MODEL hamdelt = week mlnimi mlndmi lnidev 1lnddev /SOLUTION;
RANDOM INTERCEPT week /SUB=id TYPE=UN G GCORR;

TITLE2 ’relaxing bs=ws drug effects’;
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