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DON HEDEKER:  that you’re listening to today and yesterday, will actually be on the 
website, www.mchcom.com in a matter of weeks or so, so you can hear it again, and 
again, and again, and again.  Also, the material that I’m going through this morning will 
be the material from the second day.  So yesterday when we left off, there’s still one 
lecture remaining on cluster data and that’s pertaining to ordinal data.  I thought that’s 
sort of optional, if we get to that later on today we will, if not, it’s better to move to the 
Day two material on Longitudinal.  And if you’re interested in the – some of my written 
articles and things at my root website, which is just http://tigger.uic.edu/~hedeker/  -- my 
last name – there is a number of links to several of my websites, one of which is the ML 
HTML where these PDF files and the datasets reside, but some of my articles, like the 
one down here that I’m describing, you can get the PDF via the root directory there.  So if 
you want some additional reading material on this you can get that there.   
 
So the material that we’re gonna talk about this morning is about multi-level or mixed 
models of longitudinal continuous data.  I’ve worked on a book with my colleague, 
Robert Gibbons called Longitudinal Data Analysis, and much of the material comes from 
there.  And then before that I had worked on a chapter, An Introduction to Growth 
Modeling, that – and this PDF you can get for free at my website that describes much of 
the same material.  So if you want to read a little bit more, there are some places to go to.   
 
So, once you start getting into longitudinal data, it’s a long, long process.  I felt I entered 
this building in – when I started graduate school in the ‘80’s or so and I still have only 
made my way partially through it because there’s always more things to learn, subtleties 
in the data to guide us.  But it could be worse.  You could be studying one of these two 
subjects.  So, longitudinal data analysis is not quite as, plain geometry, that would be a 
little bit worrisome if you’re on top floor, I think.   
 
So what are some advantages of longitudinal studies?  Why do you see so many studies 
these days where you are getting repeated observations across subjects?  Number one, it 
economizes on subjects.  In as sense, subjects serve as their own control because you can 
see how a subject performs relative to say, some baselines situation.  How they change 
across time and therefore you can see change relative to some starting point.  Okay, so 
that’s a very useful thing is to examine not just how a subject is say at one time point, but 
how they, at a given time point relative to where they were to assess that change.   
 



As a result of that, statistically what we can do is to extract from the error the between 
subject variation.  So in our models we will have between subject variation, how our 
subjects are different from each other and within subject variation.  Within a subject, how 
much variation is there.  If you only have one time point, you can’t partition those two.  
So the fact that we have repeated measurements from subjects allows us to say how each 
individual is different from each other.   
 
As a result of this, we can get more efficient estimators than cross-sectional designs with 
the same number and pattern of the observations.  Again, because we can subtract the 
between subject variation from the within, we can get more statistical power essentially 
with essentially less data.  And importantly, from an interpretational point of view, we 
can separate aging effects, changes over time within subjects from cohort effects; 
differences between subjects at baseline.  So if you have a cross-sectional study and you 
notice that there’s an age effect, you know, people of different ages respond differently.  
You don’t know that as a person ages that the change happens or just if people of 
difference ages are different from each other due to generational and age cohort effects.   
 
In longitudinal study, where you measure them across time, you can separate and find 
out, how are people different as they change, as they age.  So that’s a nice advantage that 
the longitudinal studies allow.  And throughout all of this we can get information about 
individual change.  Not just about how populations might change, but actually how each 
and every individual in this sample can change across time.   
 
So we’re going to be using mixed or multi-level models to analyze such longitudinal 
data.  Here’s some advantages of mixed models on multi-level models for longitudinal.  
Again, we’re gonna explicitly model how individuals change across time.  Okay?   
 
If you do analysis via a nova kinds of models.  A nova models are all about means.  
Basically comparison of group means, group means across times.  So you get information 
about how groups change across time, but you get really, no information about how 
individuals change across time.  In our mixed or multi-level models we’re going to be 
finding out about both.  How do groups change across time, how do individual change 
across time.  So that additional information can be quite useful.   
 
Now in terms of the repeated measurements, here’s really where the multi-level models 
are very useful.  They’re much more flexible.  Subjects can have different numbers of 
observations, number one.  So there’s going to be no assumption that every person is 
measured, let’s say, at all five or six time points in a study.  It’s a big advantage because 
in collection of data from humans, you would never get the situation where you measure 
everybody at every single time point.   
 
What did people do in the old days?  They threw away the subjects that were 
incompletely measured across time.  What’s the problem with that?  You have a biased 
sub-sample then.  People who are measured incompletely across time could be 
systematically different then those that are completely measured across time.   
 



So in our analysis, we’re gonna allow people that have measurements at any time points 
essentially.  That’s a huge advantage.   
 
Also, we can treat time in a continuous matter.  Now in some studies, you have fixed time 
point measurements.  You got them at baseline, six month, a year, two year.  Something 
like that.  So time – the values of time are the same for every subject.  But there’s other 
studies in which you might get subjects that’s sort of the baseline and then you follow 
them across the two-year period and some subjects might be measured at three months, 
some at four months, some at five months.  The measurement of the variables across time 
might be at different – for different subjects.   
 
Well, in our models, we’re gonna allow time to be a continuous variable, therefore what 
that allows us is that the values of time can be different for each and every subject.  
Okay?  So there’s no requirement that we have this fixed time point measurement 
scheme.  If we have it, fine, that’s great.  But we can also be more flexible.  Subjects 
don’t have to be measured at the same time point.   
 
Now for the various co-variant structure; what’s that about?  Well, you’ve got this 
dependent variable and you’re measuring it across time.  So you have the variance of 
what’s the variable at time point one, two, three, four.  What is the co-variance?  What’s 
the association?  And really, most of the models for longitudinal data, but an important 
aspect of them is how they treat that variance/co-variance structure.  Do they assume that 
the variance is the same across time?  Do they assume that all the correlations are the 
same across time? What are they saying about that?   
 
Well with the mixed models, we can specify many different structures and test them to 
get a more parsimonious statistical model.  Basically what the means is, using up as few 
parameters as we need.  Okay?  So that’s going to be a nice advantage as well.   
 
Really, in longitudinal, there’s essentially you can think of it – there’s sort of like two 
models.  There’s a model for the mean structure and then there’s a model for the 
variance/co-variance structure.  We want to pay attention really to both in order to get 
two models and also to get good statistical tests.   
 
Now, I’ll be talking really, about two level situations in which we got repeated 
observations within subjects.  But as I mentioned yesterday, we could really have this 
combination of longitudinal and clustered in which we have repeated observations within 
subjects, subjects within providers, or with states or within something like – some sort of 
clustering.  And we can – as we ran three level models yesterday, we can do the same 
thing with longitudinal and clustered.  And so we can have higher order models.   
 
A little bit later, we’re gonna start again with normal outcomes because in a way, that’s a 
bit easier in terms of the computations and the assumptions and blah, blah, blah, but 
we’re gonna also get to dichotomous outcomes as well and of course there is 
methodology out there for ordinal outcomes, for count outcomes for all the different 
kinds of outcomes we encounter.   



 
All right, so here’s the equation.  Here’s what’s called a two-level model for longitudinal 
data.  So let’s go over this.  On the left-hand side, what I have is the vector of responses 
from a given subject, “YI.”  Okay, so what’s a vector?  It’s just the collection of the 
repeated observations across time.  So if there’s say, five time points and they’ve got five.  
Well, notice that "YI” has rose “NI,” there is “NI” repeat observations.  That “I” is very 
important.  What that says is that, each subject can have different numbers of rows, 
different numbers of time points.  Okay, so the size of that repeated measures vector can 
be five, could be four, could be two, could be one.  We’re not assuming that every person 
has the same number of repeat observations by having "NI” by one.  So it’s the dependent 
variable vector from individual “I” because here I’m using “I” for individuals or subjects, 
“J” for repeated observations.  And “J” goes from one to “N” sub “I”.  The number of 
repeated observations is different from each subject.   
 
So just like yesterday, we were assuming that the number of individuals in a cluster could 
be different.  The analogist thing in longitudinals, we’re allowing that the number of 
repeat observations from a subject are different.   
 
On the right-hand side, the first thing we have is XBeta.  So our usual multiple 
regression.  Again, I want to emphasize this point.  This model is just an oddmented 
multiple regression model.  If I don’t have this part right here, we have ordinary multiple 
regression.  So again, everything that you’ve learned about regression applies here.  In 
“X” we could have **** variables, we can have continuous variables, we can have 
interactions.  We can have all of those kinds of things that you can do in ordinary 
multiple regression modeling.  That’s in “X”.   
 
What’s new about this model other than random subject effects, now yesterday we only 
really had one random effect for the cluster because again, the amount of correlation of 
the data within a cluster is not like it is in longitudinal.  Longitudinal, the data within the 
subjects is more highly correlated.  We’re gonna do more work as a result of that.  And so 
here what I’m essentially allowing for by having Z Epsilon and allowing Epsilon to be R 
by 1 is the possibility that there’s more than one random effect per subject.  We’ll see 
examples of this.  To give an idea of this is, you have a longitudinal study, you can allow 
a subject to have their own starting point.  Okay, so what’s our measure of the dependent 
variable at baseline, let’s say.  That might be one random effect.   
 
And the second random effect is, what’s their slope across time?  So we were going to 
allow the possibility, it’s that people start off at different levels of severity of illness, let’s 
say.  And they change differentially across time by having more than one random effect.   
 
Okay, so that’s the big new thing for the model today relative to yesterday.  Yesterday, 
what we had was a reduced version of this where we only had essentially one random 
effect.  Random intercept kind of model.  Here we’re gonna build upon that because, 
again, longitudinal, the data are more correlated, there’s more work to be done and more 
interesting things to look at.  Yes.   
 



Question:  [Inaudible]   
 
Answer:  It’s sort of, yeah, the fact that individuals are different from each other.  You’re 
right.  Yesterday we’re sort of controlling for the context of the cluster.  Today we’re 
going to be kind of controlling for the heterogeneity in subjects.  Yes.  The subject today 
is the cluster.  Yesterday level two was the cluster, level one was the subjects, today level 
two is the subjects, level one are the repeated observations.  Yes.   
 
Question:  Would that have also worked yesterday since we have two different actuations 
that we expressed ****?   
 
Answer:  We could have, yeah.  In a way, what I did yesterday was to gloss over to 
longitudinal aspect by modeling the post-test and using pre as a covariant.  When you 
only have two time points, you can do that.  You don’t necessarily need to – sorry, the 
question was:  yesterday we had pre and post tests and we kind of – we didn’t really treat 
it longitudinally per se, because what I did yesterday was model post tests and treat as a 
co-variant pre test.  Today instead, what we’re going to be thinking about is this really 
applies when you have more than two time points.  If you have just two time points, then 
doing that sort of pre test/post test analysis like we did yesterday, that’s generally 
reasonable.  But when you have more than two time points, you can’t really do that 
because what you are you gonna, you know, you’re gonna have post tests, pre tests, 
you’ll have more than two.  So that’s the idea is that we’re gonna expand that notion.   
 
So here we’ve got situations where we have potentially more than two time points.  Any 
more questions?   
 
Okay, we we’ve got an augmented multiple regression model, again, subject is the 
clustered, repeated observations are the clustered observations.  So here’s some pictures 
and some equations of what the picture represents.  Yesterday, we had a random 
intercepts model with a cluster as a random effect.  Here is the analogous model with the 
subject as a random effect.  And what I’ve depicted here in this graph, let’s say we’ve got 
two groups.  Those are the central lines here.  And here I’ve labeled them as males and 
females.  Okay, we’ve got some dependent variable, and here the waves, it’s looking as if 
females start here and go up like that.  Males start up here and go like that.   
 
And around each of the group, I’ve put one subject above and one subject below to 
represent the different individuals.  Now I just put two for each group for the purpose of 
illustration, but there would be as many as individual lines as there are individuals.  So 
that’s the heterogeneity across subjects is the relative to the group line, which is in the 
middle.  The dispersion of the lines above and below the group.  So on average, females 
look like this line, but there’s a female here who’s above it.  There’s a female here below 
it.   
 
On average males look like this line, but here’s a male above and here’s a male below.  
So across the males, they average to this, but there’s variation in that.  Now in this model 
here, what I’ve got in terms of regression, I’ve got a time effect, linear time effect.  I’ve 



got a group effect, that is a groups differ when time equals zero and I’ve got a group by 
time interaction.   
 
Okay, so this part of the model, the time, the group, the group by time, tells us about 
these two lines.  There’s a time effect, there’s a group effect, there’s a group by time 
interaction.  Additionally to that, I’ve got the subject effect.  Subjects are different than 
the group trend lines.  But they’re different in a constant manner.  There’s only one 
subject effect.  Okay, so the subject difference at a given time point is the same at every 
time point.  Okay.   
 
That’s the parallel lines kind of model.  It’s like the blondie model, parallel lines.  
They’re parallel to the group across time in this random intercept model.   
 
So this is sort of, the picture, this is the schematic of the model and this is the actual 
model with the Greek parameters and everything.  And so we have, time, group, group by 
time.  Now, notice the subgroups for the variables.  Here for time, I’m saying that the 
value of time could be different for each subject and at different time points.  Okay, so 
“I” represent subjects “J” represents time points.  To the values of time could vary from 
subjects and obviously values of time change across time.   
 
Here in this picture, I’ve got group varied only with subjects.  So this would be a 
situation where subjects are say, randomized, well males and females are going to be the 
same across time, that’s typically not a variable that changes across time, though I 
mention that it could.  And then group by time interaction.   
 
And then the random subject effect.  And this is exactly like the statistical model we were 
treating yesterday except that our regressors here are time, group, group by time.  But 
exactly the same thing.  Exactly like what you did yesterday.  We’ve got one random 
effect and we assume that it’s normally distributed with zero mean and variant sigma 
epsilon.  This is telling us how disbursed are the subjects.  If every person is the same as 
their group trend line, this gets small.  The between subject variation gets small.  If 
subjects different from their group trend line.  This gets large.  Subjects are different from 
each other.  So the between subject variance is telling us how much heterogeneity is there 
across subjects, between subjects, how much variance is there?   The **** variance is the 
within subject variance.  Within a subject… within a subject’s data, how much variation 
is there?  So between subject variance, within subject variance. 
 
Now this model says that each person has exactly the same slope as their group.  How 
realistic is that?  Not too realistic.  Okay, so this is a starting point, but this is probably 
not the ending point in a longitudinal data analysis because it's unlikely that every 
person's going to have exactly the same slope as their group.  All right, it just doesn't 
work that way, some people go up fast some people go up slower.  So typically, a 
longitudinal -- the random intercept model is not, it's not sort of again where you would 
end up.  You might start of analyzing looking at that, but again it makes this assumption 
that every person has exactly the same slope as their group, it's not so plausible with real 



data.  So here is one step up for man, one giant step up for statistics, or something like 
this.   
 
This useful model, we're now allowing one more random effect.  So, a random subject 
intercepts and a random subject time effect.  So now, again, we have the same two 
average group trends for females and males respectively.  And then we’ve got variation 
in terms of their intercept.  How are subjects different at times zero at the baseline point?  
And then, how are they different in terms of the slope?  Again, for illustrative purposes 
I've put for each group one subject above and one below, but of course you'd have as 
many lines as there are subjects. 
 
Now we've got these two sources of variation from subjects their intercept, their slope.  
And so now, in terms of the random effects we've got two, we've got a bi-variant normal 
distribution for that distribution.  Okay, what's that?  Bi-variant normal, we've got two 
variables here is variance of their intercepts.  How different are subjects when time 
equals zero?  When subjects come into the study, how different are they?  How much 
subject heterogeneity is there?  That's basically about the dispersion right here.  Now, 
how different are the subject values at time equals zero? 
 
The variance of the slopes tells us how different are there changes across time.  Are those 
slopes very different or not?  Realize, the last slide, the random intercept model would 
say that the slope variation is zero because it said everybody has the same slope.  The last 
slide said there was no variation in slopes at the individual level.  This model says, wait a 
minute, there is.  Here's how we’re going to estimate it. 
 
So you can see what we can do that is to statistically compare this model to the latter one 
to test that hypothesis.  Do people have different rates of change or not?  If they have the 
same rate of change across time then this parameter would equal zero.  And by 
comparing this model to the previous one, we can do a test of that idea. 
 
Okay, so we've got this, and usually the way it works in longitudinal is that this model is 
favored relative to the previous one because the last one says that everybody has to same 
rate of change, and again, often that’s not the case.  Now, there is one other parameter in 
this variance/covariance matrix for the random effect, that's the Association, the 
covariance between the intercept in the slope.  Okay so that's this one down here which is 
sigma epsilon zero epsilon one.  Epsilon zero is the intercept, epsilon one is the slope.   
 
Okay.  And what that one is about, and what most people kind of ignore that one, but it's 
kind of an interesting parameter.  It’s saying, is the person’s slope associated with where 
they start out.  In a way it's like can you predict the rate of change based on where they 
are at times zero because that's what it's about, the association between their slope in their 
time zero value.   
 
So the next one we want a little more attention to and maybe because it's you know again, 
it has some interesting qualities to it.  So this is a very useful model in longitudinal and 



we'll be applying this sort of model to data sets again, it's really not a huge step over what 
we've dealt with yesterday, the random intercept model but it is a very useful step.  Yes. 
 
Question: I have a question.  And here you assume the group is not changed, it's fixed.  Is 
that right?  What I am studying now is that even the group is changing across the time.  
I'm looking at the impact of feeding patterns on infant growth, so the feeding pattern 
changes from time point one to time point two.  So how can this model and –  
 
So the question is, here in this model, I’ve got that group, the subject is in the same group 
across all time points, but in other studies you might have were subjects change group 
membership across time.  That would be a situation where the group is what's called a 
time varying covariance.  And yes, we're going to get to an examples of where you have 
time varying covariance in your model and yes, this model can definitely accommodate 
that.  The picture wouldn’t look the way I’ve drawn it here, but yeah you could have 
we're group is different across time.  They also have that in what's called crossover 
studies were sometimes people are observed under one condition for a certain number of 
time points and then observed in a different condition for different number of time points.  
That's another situation where group membership changes across time.  And yes that can 
definitely be accommodated. 
 
Okay, any other questions?  Yes. 
 
Question:  **** examples of groupings.  You mentioned gender, right?   
 
Answer:  Yeah, sure, sure.  In clinical trials, for example, where I've done some of my 
work is people are randomized to either get a control situation were some intervention 
situation across time.  Right, so that would be a natural thing where you've got group A, 
group B, subjects that are in this.  So it might be you know like yesterday in the 
educational example, the subjects were random or the schools really were randomized to 
either get control situation or this enhanced knowledge saying and then they were 
measured across time.  And then he who your interest there was to find out is the rate of 
change across time different?  Is it the case that the people who get the enhanced 
knowledge, do they actually do better across time than the people who don't get that? 
 
So in clinical trials it’s very common that they have two or more groups so that it stays in 
that group and their measured more longitudinally across time to see the differential 
change in the groups across time to assess whether or not the group is a beneficial thing 
or not. 
 
Okay any other question? 
 
Okay, well, here is, you know, that random intercept and trend model you see in a lot of 
places.  I even saw it as an example in the Onion.  Do you guys get the Onion down here?  
I saw this, I couldn't believe it.  It's like wow!  That's a random intercept and trend model.  
Okay, it said that the rise in teen sexual activity comes as a surprise to area teens.  And it 
shows in the graph, you know, normal teens going up like this and then there is this **** 



he’s at zero.  And he stays at zero, right?  And he's different in terms of his intercept, he's 
differ then in terms of his slope.  It's terrific.  It's random intercept and trend model.  I'm 
sure the editors at the Onion didn't think of it in those terms but you know it's like wow 
that's what it is.  And so there are a lot of examples of it. 
 
Now I'm going to be showing you as well, the way to write this out as a multilevel and 
hierarchal linear model.  And the basic idea is that in the level I core within subjects 
models you put in any level I variable.  So for example, time is a level I variable, it 
changes values across time.  Now in the example I just had, group was a level II variable, 
it only changed values from subject to subject, it didn't change values across time.  Now 
in the example you asked about, group might be a level one variable, a time varying 
variable.  So this is a general schematic, the idea is that in level one you put in all the 
time varying covariates, level II you consider the subject varying covariates, things that 
don't change across time.  And so ultimately what you getting your model and sometimes 
this was, in the early days, this used to be called the slopes is outcome model, you get 
level I coefficients for the time varying covariance, level II for the time invariant and then 
cross level interactions. 
 
So for example, in the simple slide we've been considering, time was a level I variable, 
group was a level II variable, and group by time was a cross level interaction, it involves 
group, which is subject level, level II, time level I, that interaction is a cross level 
interaction.  And again, anything that's at level one could potentially be varying at the 
subject level.  And thus far in the slide what we've considered is random intercept and 
random time effect, but really the effect of any time varying covariant could be random at 
the subject level.  Okay, so that's the general schematic, we'll see specific examples of the 
way we were writing it that way.   
 
Now here's the way I like to write it.  I always think in matrix terms.  I know most people 
don't like matrices, but I’m always… I’m kind of struck by that because people don't like 
matrices, but a lot of people watch Hollywood Squares or at least they used to.  And 
what's Hollywood Squares but a 3 x 3 matrix of washed up celebrities, right.  So I don't 
understand; I get a disconnect there. 
 
Okay here, the way I've written it, is I've got on the top essentially the Y=XBeta part of 
things.  Really, the multiple regression part of things I have under the top part.  So "Y" is 
the dependent variable vector.  Again, the number of rows here is going to be the number 
of time points for a given subject.  And then I've got these regressors that I'm considering, 
time, group, group by time.  Now if you write it this way you can easily see that the 
values of time can be very different for every subject because time is just regressor.  
Think about this, but if you have blood pressure as an independent variable those values 
are different from subject to subject.  Time is just like that, it's just a regressor here.  So 
the values of time can be different for each and every subject.  The number of time points 
can change, that's the number of rows here, and the actual values of time could be 
different too.  Yes question? 
 



Question:  Does each subject, start at their own zero or do you have one zero point and 
everybody’s kind of in the same time?   
 
Answer: Right.  The question is about the zero point.  Does everybody start at baseline or 
do different -- it depends on the study.  In some studies you know people come in 
baseline is baseline, that's times zero.  In other studies it's more of an observational 
studies and then let you consider times zero to be could be different from subject to 
subject.  It kind of depends on the given subject and the aims of the studies.  But you 
know, in clinical trials sorts of things, which I guess maybe not -- you know times zero is 
sort of like it's fixed in time.  But again observationally, you might think of time zero as a 
given age for a given you know something like that and fix that as times zero.  So it kind 
of varies. 
 
Okay, so this is the regression part of thing.  And down, on the bottom I’ve got the 
random part of things; the random effects, the intercept and time effect, and then the 
random errors.  And so the random effects are all about the between subject variation, 
how are subjects different in terms of their starting point, in terms of their track.  The 
within subject variance, the error variance, within a subject how much variation is there.  
So between subject variance within subject variance.  And again as you see time is just 
here a predictor so it can be measured in years, months and it could differ from subject to 
subject.  So there is great flexibility here with how we can treat time especially relative to 
if you’ve done any work with Anover models, **** variance models, time variance is 
treated like a factor.  And everybody's got to have you know four time points.  If you 
don't have four time points and you're not in the analysis. 
 
Now this slides a little bit much but let me give you an idea of this.  This says in this 
model with two random effects, random intercept and time, what are we saying about the 
variance covariance matrix?  That is, of the dependent variable, whether we saying about 
the variance across time and the covariance of the repeated time points?  So here in this 
slide I'm saying, let's say we get a random intercept and trend model and here I'm just 
quoting time sequentially in zero, one, two, four say three time points, here's the four of 
variance-covariance matrix for the three repeated measurements.  Now the first thing you 
notice is this ugly right.  I want to convince you that ugly as beautiful.  Why?  It's 
complicated.  Right?  But notice, on the diagonal what we have is the variance of the 
three repeating measures, it changes.  In most studies, the variance of the dependent 
variable is not constant across time, it often grows across time.  People get more disparate 
as you go across time points.  So this model is allowing that.  A simpler random intercept 
model alternatively, would say the variance of the dependent variable is the same every 
single time point.  So again, that's not a very plausible structure usually.   
 
So again, this one giant -- this one little step of having a random trend model is allowing 
us to say something a bit more realistic are the variance and also for the covariances is in 
the repeated measures.  Covariances are like this.  If you have two time points that are 
close the covariation is usually much stronger than if two time points were far apart. 
 



It's not rocket science, if you measure people at one for zero and one to one, the 
Association is going to be stronger than one to zero and one year later.  So again you 
want a model that says that the covariances is far stronger if they're closer in time and 
weaker if they're further away in time.  And this model accommodates that this simple 
random intercept model does not.  It says that all of those covariances are the same.  So 
the random intercept model that we used yesterday can be faulted on several counts in 
longitudinal.  Number one, it says every person has the same slope across time relative to 
their group.  Okay, so that's **** realistic.  As a result of that, it's also saying that the 
variance of the dependent variable is exactly the same at every single time point and all 
of the covariances are exactly the same.  Now none of those things are generally seen as 
real data.  And so moving up to a random intercept and random trend model of is an 
advantageous step for longitudinal. 
 
Now, more general models than what I’ll talk about today, also allow things like auto 
correlated errors, so there's additional work that can be done in this realm.  We'll be 
dealing mostly with this sort of model today. 
 
All right, so you're probably say like this, “I've followed you up to a point where you had 
a picture of oregano.”  But I would argue this, you see on the blackboard there this 
person’s got integrals, it's got square roots it's got all kinds of complicated math, you 
haven't seen yet.  Just kidding. 
 
Okay, so let's get to an example.  Again I apologize if this example is not necessarily in 
your substitutive research area, but it's a good teaching example again.    And one I've 
used for a while and it has some nice aspects to it that highlights the differences in the 
modeling techniques.  It's an old study in psychiatry from **** and Associates, and 
they've looked at the relationship between Imipramine and Desipramine plasma levels 
and response from depression in 66 depressed in-patients.  So, what's Imipramine and 
what's Desipramine?  Those are classic tricyclic antidepressants.  And actually, the way it 
works, is that a person was given Imipramine, that's the drug, and then in the body it 
metabolizes to Desipramine, both of those chemicals are known to have antidepressant 
properties, so they measured both in the subjects.  
 
Now this study was carried out in 1977 and Imipramine was kind of like the classic 
antidepressant at that time.  If this study was carried out today what would they be given 
instead?  Prozac, right.  Prozac.  So the Imipramine has sort of side effects like dryness of 
mouth and other things that Prozac seems to handle better.  So these days Imipramine is 
not used as commonly as it was back then. 
 
Okay, now there are 66 subjects, not a terrible -- for an epi study that's nothing, right.  
But in psychiatry that's actually a pretty reasonable sample.  They were classified in 
terms of endogenous, non-endogenous standards.  Okay, does everybody know what 
that's all about?   
 
Question:  Self-selecting or self-selected versus non?   
 



Answer:  No.  Not exactly.  It is -- 
 
Question:  Is it if there’s an external basis for the depression, like a loss in the family or 
something? 
 
Answer:  Yes.  Exactly that’s exactly right.  The way it works is that if the depression 
was precipitated by some tragic life event, right, like a spouse dies, like White Sox lose 
the World Series, something of that nature then that would be called a non-endogenous 
depression, or reactive depression.  Conversely if there is no precipitating life event that 
is classified as an endogenous depression.  And the thought was that the drugs might 
work better for endogenous depression because that's kind of more of a chemically, you 
know, organic sort of development.  It has nothing to do with tragic life events, let's say.  
So they separated the subjects in terms of those two diagnostic groups and are interested 
in knowing if the response across time are different for those two groups. 
 
So here's the study design, there was a one-week drug washout period in which the 
Hamilton Depression Scale, and this is kind of a common relating scale for measuring 
depression was obtained.  And the baseline at week zero people were diagnosed in terms 
of being either endogenous or non-endogenous.  Not after the first week, people were 
given the drug Imipramine and they were given it at four time points, at each time point 
at the end of the week they were measured at how much Imipramine was floating around 
in the body as well as how much Desipramine.  Okay, so what happened is that people 
would take pills, but that gets metabolized to Desipramine.  Soon your body you would 
have both of these things floating around and they both have antidepressant properties so 
they would measure them both. 
 
So what's interesting about this study design is that first of all, we've got a longitudinal -- 
this is what our dependent variables are going to be, the depression rating scale.  We've 
got covariants, like diagnosis, diagnosis doesn't change across time.  People in the same 
within a depressive episode they're either endogenous or non-endogenous.  And then 
we've got the time varying covariance of Imipramine and Desipramine.  And notice the 
sample size at the bottom time point, by the way, that should really be large and 
interpretive of my notation that it refers to the number of subjects.  It's a pretty well-
designed study, 66 depressed inpatients, but not at any of time point do you have all 66.  
So, incomplete data across time. 
 
Okay, so here’s the outcome variable to the Hamilton Depression Scores.  The 
independent variables will be diagnosis, Imipramine and Desipramine for diagnosis 
we’ve just have the two groups so we can use a simple dummy code to represent the two 
groups.  For Imipramine, that's the drug that was given, 225 mg per day in those last four 
weeks.  Desipramine was a metabolite of Imipramine that was also measured. 
 
Okay, so here are some observed descriptive statistics for this data set.  Here's two 
groups, endogenous/non-endogenous, again, it's small and it really should be large at how 
many subjects there are at different time points, here is the means.  Incidentally, higher 
values indicate more depression, lower values indicate less depression, so what they were 



hoping to see is that the means go down across time and if you look at these means across 
time they do.  And on the bottom we have this pool standard deviation.  Okay, so this is 
the standard deviation for the dependent variable across the six time points.  Notice the 
values of it.  They grow.  Why?  In the study, people come in and there are differing 
levels of severity of illness, across time some improve in some don't improve.  So it's 
common sense that you're going to see increased variance across time.  So you want a 
statistical model that can accommodate that.  Again, a random intercept model would not 
accommodate that.  So if it's a random intercept and time model it can't. 
 
Now in terms of endogenous, non-endogenous, do we see a differential pattern across 
time?  Does it look like the drug works better for endogenous or non-endogenous?  Well 
if you look at the means you can see that at every single time point the endogenous group 
there's a little bit higher than the non-endogenous group.  But the mean difference doesn't 
seem to change much really across the different time points, it's about two or three points 
at every single time point.  And so it looks like both groups are of going down across 
time and it doesn't necessarily look like the rates of change across time for the two groups 
are any different.  So were gonna test that but just the eyeball statistical test that kind of 
suggests that both groups are going down, there doesn't seem to be a great deal of change 
in their slopes across time. 
 
Now here is a measure of association for the Hamilton across the six time points.  And 
what I put in bold are the **** **** correlations and above the diagonal are the 
paralyzed deleted correlations.  Okay, what's the difference?  When you have six 
variables like this and you go to a say, Proc core or whatever, what it will do by default 
is, list wise delete it.  It will throw out any person that doesn’t have one of the six.  And 
then, you this study you'd be left with 46 subjects.  So think about this, any statistical 
analysis that would throw out subjects with incomplete data, and you could be throwing 
out a third of your data set here.  You know if you only have 66, you don't want to lose 
20, that's rather a lot.  So analyzing only the completers has two major problems with it.  
Number one, you're going to have less statistical power, number two, the question of 
bias; the people who are completely measured across time can be systematically different 
than those who are a incompletely measured across time.  Okay, so we don't want to do 
that.  And we’re not to do that day but this will give you an idea of what would happen 
should we go with an analysis that throws out incomplete subjects.  We would only be 
left with the 46 out of the 66. 
 
Now in terms of the correlational structure, what you see here is what you often see in 
longitudinal.  First of all, as you go away from the diagonal, you are going to correlations 
that are further away in time.  And so let's say, week zero and week two, associations is 
.22.  Week zero and Week one is .5, about.  It’s stronger.  If the measurements are closer 
in time, they’re more highly correlated than if they are further way in time.  Again, it’s 
not like rocket science.  It makes a lot of sense that measurements are going to be closer 
in time or they’re be more correlated than those that are further apart.  That’s exactly 
what you see here.  In other words that as the lag increases, you know, if the lag is five 
weeks apart, four weeks apart, the association is less than if it’s one week apart.   
 



Additionally, within a lag, that is, within a sub diagonal, it seems like the association 
might be increasing.  Okay?  That’s maybe not so dominant, but there’s a suggestion of 
that.   
 
Now if you look at the pair-wise, which – I’m sorry, the peer-wise – and the way the pair-
wise are computed is for any given correlation, the people who are – this is based on, are 
people who have week two and week five.  And so that’s why the number at any one of 
these could be between 46 and 66.  So, the number of subjects used for a given 
correlation depends only on how many subjects have those two time points.  In bold, it 
depends on how many subjects have those six time points.  Okay, so the data 
requirements for the pair wise, you know they’re kind of less.   
 
It doesn’t look like there’s anything systematically different between that.  What that 
suggests is that maybe subjects are incompletely measured are not systematically 
different than those who are completely – again, this afternoon, we’re actually going to 
get into a little bit of testing of that idea, but for the moment it does look too bad with 
relation to that.   
 
Okay, but so far, these two slides I think have been pretty daunting evidence that a 
random intercept model is not a good model for these data.  Again, the random intercept 
model would say that the variance across time is all the same.  The last line show that the 
variance increases across time.  The random intercept model would say all these 
correlations are the same.  They don’t look to be the same, they differ in a very 
systematic way and so random intercept in time model makes much more sense here.   
 
Okay.  Now here’s what’s called Spaghetti Plots.  Some of you might have had spaghetti 
last night here’s the data analysis version of that.  What’s a Spaghetti Plot?  It’s a plot of 
all the data, all the dependent variable values for a given subject.  So for example, this 
guy in blue, or this person in blue, they started off here at 30 and went up to like 40 and 
then went down.  What this gives you a flavor of is the gross pattern of the data across 
time and the variation across time.  So by and large what you see is that well in general 
the pattern of the data is that it is going down across time.  So on average people are 
improving.  Not for everybody, notice these couple of subjects out here.  They're actually 
getting worse. 
 
Okay, when you do an analysis just that means, you don't observe these things.  When 
you focus on the individual as well you get information, not just about the means, but 
individual.  There are some subjects out here who do worse there are some subjects here 
who are doing rather remarkably well, getting down to zero.  You know that's like Bobby 
Mc Ferret, "Don't Worry Be Happy,” ****.  Like who's like that? 
 
Notice also the increasing variance across time; just look at the range.  Twenty-five to 35 
at baseline, at the end of the study it's like zero to 35.  We had that standard deviation at 
every time point it went up, okay fine.  Here's the visual representation of that.  The 
variance at every time point is growing.  Why?  Again, some people do great; some 
people don't do as well. 



 
So Spaghetti Plots are kind of useful for examining getting a feel for the data and it also 
can be useful for finding any outliers, some really weird values because again if you do 
the analysis you won't necessarily know that some subjects at this time point has an 
impossible value.  You do this and you can say, oh wow, there is somebody like really 
weird, what's that data point all about. 
 
Okay let's run some analyses.  We're gonna start with this random intercept in trend 
model and this first model is akin to the mixed model version of the simple linear 
regression model.  Now in the linear regression presumably the first model you learn with 
simple linear regression.  What simple linear regression? 1Y, 1X right.  You've got one 
dependent variable, you've got one X variable, you can draw in that little line, Beta Knot, 
thats the intercept, Beta 1 is the slope.  Right?  We've got the analogous version of that 
here in longitudinal.  On the top part, I've got the intercepted slope for the effect of time.  
So Beta Knot here is what's the mean of the Hamilton when time equals zero, Beta one is 
how does that mean of the Hamilton change with every increment of time?  Here I've 
quoted time simply as zero, one, two, three, four, five for the six time points.  So what 
we're gonna get with Beta one is what's the per week change in the mean of the 
Hamilton?  How much does the Hamilton mean change with every week?  That's what 
Beta one will address.  Zero will say, what's the mean of the Hamilton when time equals 
zero, the intercept? 
 
So Beta Knot and Beta one will be about the population.  Where does the population start 
out?  How do they change across time?  Down below here I have at the individual level 
the intercept and time effect.  How does a given subject start out?  How does a given 
subject vary across time?  So the subject intercept and the subject slope.  Now the epsilon 
are subject parameters are deviations relative to the over all population.  So for example, 
if the subject has exactly the same starting point as the population epsilon zero would-be 
zero.  These are deviations.  Epsilon zero deviations is relative to Beta Knot.  There is 
subject deviations relative to the population trend line. 
 
Okay, so this is simple linear mixed regression you might call it because we have 
information about how the population is changing, how the individuals are changing. But 
we've only got one covariant here and that's time.  But we have information about the 
slope at the population and at the subject level.  Now if we write this is a multilevel 
model, here's how it looks.  We've only got one regressor, one independent variable, one 
explanatory variable whatever you want to call it, one covariant, one X, okay it's time.  
Time changes values across time, it's a level I or a within subjects variable.  It changes 
values within subjects.  So I've got that at level I, so I'm modeling the Hamilton from 
subject "I" at time point "J." in terms of an intercept and a slope.  The intercept and slope 
come down at level II between subjects to be modeled in terms of any subject level 
variables.  Now in his first example I have none.  So all I'm saying with this model is that 
a person's intercept is made up of the population intercept, Beta Knot, and their own 
deviation to that population intercept. 
 



A person's weekly change or slope is made up of the population's slope in their own 
deviation relative to that.  Okay, so this is a simple random intercept and trend model 
with just time as a predictor.  The random intercept version of this would be like that.  
And what that would say is every person has the same slope.  Again, that doesn't -- that 
doesn't make sense, so a lot of that second random effect here is rather useful saying 
every person has a different slope.  So this is the way to write it as a multilevel model, 
okay, in running yet we don't necessarily have to do this, but it is helpful for us to 
understand what we're doing to write it this way. 
 
Here are the results, and in a little bit will show how to do this.  We can do this with Proc 
Mix because all we have really is just one regressor and we've got two random effects so 
here we've got the estimate of the intercept and the slope, the maximum "Y" period 
estimate, the standard error, the ratio of the estimate to the slope that's the "Z" or "T" 
value that's assessed that indicates -- and then the "P" values.   
 
So first of all let's look at it row by row.  The estimate is 23 1/2.  So the population is 
starting off with depression levels at about 23 1/2.  That's pretty depressed.  That's highly 
significant.  Is that test, that first test, is that of any interest?  This is a depression study, 
what is it testing?  You're testing that Beta Knot is equal to zero.  Could that ever be?  
No.  It's impossible.  Why would -- I mean again, you're talking about a Bobby **** 
territory if you have a Hamilton zero.  And if you have a depression study, there is no 
way that the average at the start is going to be zero.  It makes -- so it's significant, but 
who cares.  So oftentimes in regression modeling testing the intercept is of no 
consequence really in this case.   
 
But the next one, the slope, that's basically saying, does the mean of the Hamilton change 
across time?  And literally here, I'm considering linear change across time.  We'll get to 
nonlinear change but for the moment I'm saying does the mean that the Hamilton change 
linearly across week.  We get the estimate of -2 1/3 about what each week people are 
improving by about 2 1/3 points.  Okay the mean is changing by -2.38.  That's highly 
significant.  What that means is that we can reject the horizontal line in favor of a line 
that goes down by over two points per week.  So on average people are improving.  I 
should point out, we haven't yet considered a diagnostic group, we haven't yet considered 
the drug levels.  Okay.  So we're starting off just addressing, is there change across time?  
That's all.  So there is statistically significant change across time. 
 
Now, here we have our random effect variance for the intercept, the slope, and the 
covariance.  Now first let's look at the intercept variance, it's 12.63.  What is that telling 
us?  What's the square root of 12.63?  It's somewhere between three and four, right?  
Okay, let's call it 3 1/2 let's make it simple.  Well that's approximate to what we wanted, 
3 1/2.  What I'm doing is this.  The intercept is estimated to be 23.58, this is about how 
much variation there is in the intercept.  So let's think about getting a 95% confidence 
limit for where the intercept resides, it would be 23.58 plus or minus approximately 2 or 
1.96 times the standard deviation.  So the standard deviation is about 3 1/2, if we multiply 
that by two we get seven.  So on average people are 27.5, but the 95% upper level would 
be about 30, lower would be about 16.  Okay so, on average 23, but there's variation 



between 16 and 30 thereabouts.  That's what this is helping us to identify.  Is there a 
significant variation at times zero people are not all starting at 23 1/2.  You know when 
you see that intercept estimate of 23 1/2 you're like, oh everybody's at 23 1/2.  No.  Not 
everybody is at 23 1/2.  On average everybody's at 23 1/2.  But there's a lot of variation 
and this intercept variance is telling us about that. 
 
Likewise, the covariance.  On average, you know you see this, like whoa.  2 1/3, 
everybody's improving, no, everyone's not improved.  Or you don't know that, let's put it 
that way.  All you know is that on average people are improving, you don't know that 
everybody's improving.  I mean you’re kind of drawn to that.  You think about oh the 
drug works that it's great.  On average it works.  Here's the variance of the slope.  Two.  
What's the square root of two?  To put it on a standard deviation metrics it's like 1.4, or 
something like that.  That's a number I should know, the square root of two, that comes 
up a lot in statistics.  Let's say it's 1.4, I think it's something like that.  So again, I'll 
multiply it by 2.8.  Okay so some people, -2 plus 2.8, they're rather down in the positive 
region.  In other words, they're increasing.  -2.8 minus 2.8 minus 5, some people are 
having tremendous improvement across time.  Okay so again, this is -- you know you're 
seeing ****, people are improving, this says well wait a minute, there is range of net 
improvement, there's variation.  Some people are improving a lot, some people are 
improving not so much.  That's what the variance reflects. 
 
Now, we'll get estimates of those individual random effects that will also bear this out but 
when you just see this you can also get a feeling for that. 
 
Now here's the covariance, it's negative, and expressed as a correlation it works out to be 
-.3.  Okay and I say most people kind of ignore that, but what that's suggesting is what?  
It’s saying a negative relationship between an intercept and the slope, in other words, if 
the intercept is higher, the slope is more negative.  Now what could be producing that, 
higher intercept, more negative slope? 
 
Right.  So they're higher.  And that's associated with having more of a negative slope.  
More depressed, more improvement.  Right.  That's what that's suggesting.  What could 
be causing that though?  What?  The drug?  Maybe.  Ever heard of anything called 
regression toward the mean?  Right.  If you have a sort of abnormally high value at one 
time point, you're next time point could be lower just for regression toward the mean.  So 
that could be causing this negative association. 
 
Another thing, as you mentioned is the drug.  In psychiatry, there is this notion that the 
drugs don't work as well for people who are mildly depressed relative to people who are 
really depressed.  This would bear that out as well.  My here's another thing to consider.  
If you start off at 30 you can go all the way down to zero.  If you start out at 15 you can 
go all the way down to zero.  Who's gonna have more of a negative flow?  So the rating 
scale, the floor effect could also be having something to do with this negative association.  
With the data we cannot necessarily separate those three ideas, regression toward the 
mean, better you know work for the drug or floor effect.  Really, all of them could be 



yielding this sort of negative association.  So we don't necessarily want to make too much 
of that. 
 
Now as mentioned yesterday, for the variance/covariance parameters the wall test, taking 
the estimate dividing by a standard error, that's kind of a dubious test so instead of that 
we prefer likelihood to ratio test for the variance/covariance parameters.  Now here I've 
done this right here.  With this statistic, what I've done is compare this model to a simpler 
model that didn't have the variance in the slope and therefore didn't have the covariance 
between the intercept and the slope.  It didn't have these two parameters; the simple 
random intercept model.  If I fit that model and compare it to this model, I get a chi 
square of 66 and two degrees of freedom.  That's highly significant.  And that's rejecting 
this null hypothesis.  The null hypothesis is saying that there is no variation in the slopes.  
Everybody has the same slope.  So we can easily reject that statistically.  I mean, 
common sense we reject it because it's saying everybody has the same rate of change 
across time.  That doesn't make much sense. 
 
Here's the statistical test of that.  By comparison of this model to a simpler model that 
doesn't have the random slope, we get a highly significant improvement in model fit for 
this model.  Yes? 
 
Question:  Can you review how you came to that very last **** again? 
 
Answer:  Right.  What I did was I compared this model and this log likelihood value to a 
simpler model at which I did not allow slopes to vary from subject to subject.  In other 
words, I had a model without this.  And so will see -- will have SAS syntax to show 
exactly how one runs those two models.  Here I didn't run that first model and show you 
the results because again, it's logically implausible, generally.  And so what I'm showing 
is a result of that test.  But it's just comparing the model that I have here to a model that 
says, there is only a random intercept and that's it.  And the random intercept model is 
resoundingly rejected in favor of this model.   
 
Okay, so again I said it was kind of like one small step, but you can see the improvement 
by that small step by saying the subjects vary in terms of their slopes, that fits a lot better 
than saying the subjects have the same slope. 
 
Another point is that in some of the software you sometimes see these walls statistics 
squared and then expressed as a chi-square statistic.  Actually where you see that mostly 
is with logistic regression when they take that ratio and they squared and they represent 
the test as a chi-square.  The two, it's the same thing; it's just a re-expression of the same 
test statistic. 
 
Now let's take a look at the estimates we got in now while they fit the observed 
quantities.  Here in red, what I have are the observed means across the six time points.  
And the green line is what was estimated for the means across the six time points.  How 
did I get those?  Let's go back to the estimates.  Based on this, what is the estimate of the 
Hamilton mean when time equals zero?  23.58, great.  Perfect.  What's the estimate of the 



Hamilton mean when time equals one?  It's the sum of those two, right?  And then at 
week two is the intercept +2 times the slope, etc. etc. right.  Those first estimates tell us 
basically what's the Hamilton across time, the mean of the Hamilton.  So that's exactly 
what I calculated here in this row here, what's the Hamilton mean and it's only based on 
the intercept and the slope estimate.   
 
And here's the observed quantities.  And when I saw this I felt like Gregor Amendol.  
Does anybody remember Amendol?  He postulated those laws and then it was found out 
that he actually, I think, had thrown some of the data away because it looked like it was -- 
I couldn't believe the fit.  It's like perfect linear fit of the means.  Right is quite amazing 
that the model, the Hamilton mean is really changing in a linear manner across time.  So 
quite remarkable how well the model picks that up okay.  But really I didn't throw out 
any of the data.  Maybe **** did I don't know.  But I didn't. 
 
Now here's a variance/covariance matrix.  That's the observed variance covariance 
matrix.  Now on the diagonal, what you have are the variance across the six time points 
and on the off angle you have the covariance.  So for example, the 602 is a covariation 
between week zero and week five.  And now what I've done is also to calculate what's the 
estimated variance/covariance matrix based on my model.  Well, that's this form here, 
this kind of ugly form, but it involves only, let's see, four parameters.  Error variance is 
one and then in the variance/covariance random effects I have intercept variants, slope 
variance, intercept sloped covariance.  So four parameters.  Now how many elements are 
in this variance/covariance matrix?  It's a 6 x 6 symmetric matrix.  Anybody know the 
rule?  It's 6x7 divided by two, so that's 21.  There’s 21 elements here in this variance 
covariance matrix, I'm fitting it with for parameters.  How well am I doing?  Not bad, not 
bad.  You can see that the model is picking up that increased variance across time the 
diminished variants as we go away from the diagonal, so the covariance, the increase 
covariation with in a lag.  With only four, it's doing a pretty reasonable job. 
 
Now on the bottom I have with the simpler random intercept model estimated for its two 
variances, 16 and 19.  Okay we saw that chi-squared statistic of 66 that rejected this 
model in favor of this model.  Well here's why.  What the random intercept model would 
be saying about the variance, the diagonal, is that it's the sum of these two numbers.  It's 
like 35.2.  Now look at those variances, are they equal to 35.2?  On average they are, if 
you average those variances up and get an average it's like 35.2.  But they differ 
systematically from that.  At earlier time points less variance, increasing variance across 
time.  So again, this simpler random intercept model which says that the variances are the 
same across time, you know it doesn't fit very well.  Likewise, the co-variances.  The co-
variances in the random intercept model well it would say all of those co-variances are 
equal to 16.  Again, they're not they've differ systematically from that in that in the way 
that they are smaller as you go away from the diagonal and within a lag they tend to 
increase. 
 
So we got that test statistic of 66 with two degrees of freedom and we resoundly rejected 
the random intercept model.  When you look at the estimates and what it would imply 
about the variance/covariance structure, you know you can really see why it was rejected.  



It doesn't fit the data.  And going up to this model with these two more parameters 
because really that’s what we're talking about here.  This model had two, our model over 
here now has four; a lot, lot better fit by adding that random trend in the model.   
 
Now here are the random effect estimates.  I'll show you in a bit how to get those out.  
Yesterday there was some question about how you get the random effect cluster estimates 
out.  We didn't show you then the syntax, today we will because longitudinal often, it's a 
little bit more normal to look at those things.  Here shows each person, their intercept and 
their estimated slope.  Now what I've done here is to put in dash lines the average of the 
intercept and the average of the slope.  And each dot represents one of the 66 subjects, so 
for example, this subject right here, let's say their intercept is 25, their intercept deviation 
relative to the average intercept is like about 1 1/2, their slope is -5 or so, so this is a 
subject who has the greatest change relative to the average change.  Here's the average 
change. 
 
Now if you look at this, you'll find some interesting subjects.  These subjects out here 
first of all.  These are subjects that are starting off pretty close to the average in terms of 
their depression level.  But look at their slope values.  Theirs are actually positive.  These 
are people that are not doing well you know they're actually getting higher values across 
time.  So what this can be useful for is, matter of fact, who are these subjects?  Why are 
they doing so poorly?  Also, these subjects appear, these are kind of interesting 
individuals.  They're starting off at the highest level of depression, they have very 
negative slopes.  These are people that are really improving a lot across time.  They're 
getting kind of interesting subjects; you might want to take a look at. 
 
So looking at these estimated random effects can be useful in exploratory kinds of ways 
of try to help you understand the data a little bit more and suggest some other analyses.  
Now here's another thing, remember when we saw that negative covariance between the 
intercept and the slope?  And I said it could be due to regression toward the mean, could 
be because the drugs worked better for more depressed subjects, it could be due to a floor 
effect of measurement.  Now if I take these two subjects out, do you think there is an 
association between the intercept and slope?  Does it look like there's any association 
between this and this if I take these two points out?  Not really.  Not really. 
 
So in this sense that negative covariance was in some part at least to those two subjects 
who they started out really depressed, because they were quite a bit above their peers, and 
they have really good responses across time.  So again when you do this it kind of 
informs that covariance as well.  So you shouldn't make much of it because it's really -- 
it's kind of being driven by a few subjects. 
 
Now let's look at how you run these models actually.  And we're gonna get into doing 
that.  Here is some SAS code, Proc mixed that we will use just a bit.  Let me explain the 
code that we have here.  The data set that we’re reading in that you have available is 
called resbe.dat.  Now it also says the resbe data Hamilton Depression Rating Scores 
Across Time.  Again, we're going to have to modify the in file statement because we have 
it in a different location than what I currently have there.  The variables I'm reading in ID, 



is the subject ID, HamD is the depression level.  So one thing to realize is in this way it's 
in that long format.  There's as many rows as the subject has data.  So repeated measures 
don't go across as they do if you're using something like M plus.  Other software where 
the repeated measures are considered different variables.  Here the repeated measures are 
different lines.  
 
ID the Hamilton Depression, again, I've got an intercept in there for historical reasons, 
but for some other programs I needed that for SAS you don't need that so just ignore that.  
Then the value of week.  Week goes from zero to 5, so zero, one, two, three, four, five.  
Endogenous.  We're going to look at that in just a moment or if no endogenous, 
endogenous, status, endogenous by week, the product of endogenous by week.  It's the 
interaction term. 
 
Now the random intercept model that I didn't show the results of, but we used in the tests 
can be estimated like this.  In Proc Mixed a specified maximum **** estimation, I'm here 
asking for tests of the various covariate parameters when one gets the output I'll say a 
little bit more about that. 
 
Class, I mentioned ID, model statement, Hamilton Depression is equal to week because I 
only have week as a regressor at this point.  And again, the solution.  Again in Proc 
Mixed by default you will not get estimates of the datas, right, the regression 
coefficiency; you have to ask for it.  So that's what solution is all about.  Give me the 
solution, why would I be writing this if I didn't want the solution.  I don't know. 
 
Then the random statement.  Here I'm asking for a random intercept model first.  Subject 
equals ID, type equals unstructured and "G".  Okay, let me say little bit about that.  What 
SAS calls the variance/covariance matrix of the random effects, it calls it the "G" matrix.  
I'm not sure why they call it "G", but that's what they call it.  So here I'm asking, printout 
that "G" matrix.  Now by default when you run Proc Mixed if you have more than one 
random effect it assumes that they are uncorrelated.  It assumes what would be called 
type equals diagonal.  There are no -- there is no association between your multiple 
random effects.  Now strictly speaking, in this first model, I only have one random effect.  
So there is no multiple random effects, there's no covariance so I don't need this type 
equals unstructured.  Type equals unstructured basically tells it, estimate those 
covariances between the multiple random effects.  At this point I don't need it, here I will 
but I think it's useful practice to always put on the random statement type equals 
unstructured.  Why?  If you don't put this and you have more than one random effect, 
you're going to be estimating a model in which you assume, for example, that the person's 
intercept and their slope are uncorrelated.  It won't estimate the covariances by default.  
Now for other kinds of mixed models, that might be appropriate.  For longitudinal, I can't 
see why a priori you would assume that. 
 
So SAS has this default that I think is a rather bad choice for longitudinal because it by 
default, it is going to assume that you have more than one random effect that they are 
uncorrelated.  I guess it does it for computational reasons, I don't know for sure.  But I 
would always, if you're running Proc Mixed and you've got more than one random effect, 



always have type equals unstructured.  That will allow estimation of all variances of the 
random effects as well as the covariances. 
 
So for example, we have that negative covariance between the intercept and slope.  If you 
don't put this it's not been estimate that and you're gonna be saying that a person starting 
point and their slope are totally independent.  Why would you want to make that 
assumption?  There is no good reason. 
 
Okay, so that's the syntax for the random intercept model and then for the random 
intercept and time model, I simply add week on to random statement and that's all you 
got to do.  So again, I want to emphasize that type equal unstructured really is not 
essential here because you only have one random effect, but here it is.  Now the other 
thing that I've added here is "G" core.  What that does is the random effect 
variants/covariance matrix it expresses it as a correlation matrix as well.  So you'll get it 
in covariance form as well as correlation form, that's all that that's about. 
 
Any questions about the syntax?  Yes. 
 
Question: I didn't see the variable for the endogenous. 
 
Answer:  Right.  The question was, I didn't see the variable for the endogenous.  I haven't 
yet considered that yet in the problem.  So what I'm showing here is just the models I fit 
thus far in terms of the PDFs.  Okay, so thus far the results I've shown you were for this 
analysis.  And I then did a likelihood to ratio comparison test comparing this to this.  Yes. 
 
Question: I'm a little confused.  Time refers to the structure? 
 
Answer:  Yes. 
 
Question: so is that truly a compound symmetry structure? 
 
Answer:  No, no.  The question was, about this type structure.  Type equals unstructured.  
All this is saying is that, again, it really pertains if you have more than one random effect.  
And then it says like down here, it's saying, let the covariance be estimated.  In other 
words it says that this two by two variance covariance matrix is unstructured. 
 
Question:  So if you were estimating, say a compound symmetry structure, you wouldn't 
have the CS there, how to address it, you would have AR?   
 
Answer:  Let me say with regards to those kinds of structures the question is about these 
auto regressive or compounds symmetry structure.  You would generally not have that for 
the random effects, you might have that for the error variance/covariance because for the 
random effects you know there is no reason to think that the intercept and time would 
follow, let's say an error one structure.  You're right.  Or you're talking about more about 
the error variance/covariance matrix where you might have an AR1 or a compound 



symmetry or something of that nature or for the random part of things she would never 
really want to have anything other than this. 
 
Okay, well this then shows the analysis that which also produces the random effect 
estimates.  Okay so the random effect estimates I used specifically in creating this plot, 
how did I get these dots?  Because we didn't see them for example, yesterday we ran 
these mixed models; we didn't see the individual random effect estimates.  But here I’ve 
got this plot using those random effect estimates.  For each person their intercept, their 
slope.  How did I get those?  By default you're not going to get those so if I run this, I 
won't get an estimate each person's intercept and slope what it is a variance of the 
intercept.  What's the variance of the slopes.  So let's say I want that but I also want every 
person's intercept estimate, every person sloped estimate.   
 
On this slide here I have how you can do that.  What it involves is the SAS statement 
ODS.  Does anybody use ODS?  As its name implies.  It stands for Output Delivery 
System.  And basically it's a way of getting all kinds of things from a given SAS 
procedure to be output to a new data set.  In this case I'm going to be using it to give a 
solution other random effects, put that out to a file, and then I can do some work on that. 
 
Okay, so everything here is the same as before in terms of the random intercept and time 
model, except I should say in the random statement I also have to add here, ask for 
solution.  Okay, so I need that there if I want to get the solution for the random effects.  
In other words, to get each person's intercept, each person's time, effect. 
 
Okay on the next line, what I’m directing it to do is this.  First, I’m saying, well don’t list 
those estimates out in the output, rather put them out to an output dataset that I name 
Randest.  So what I’m doing with this line here is really two statements, I’m saying, in 
terms of the physical output, don’t list those random effect estimates, instead put them 
out to this data file.  Okay?  Then what I do is I print them out.  Okay, so you might say, 
why did you print them out of you asked not to list them here?  It’s true, it’s like, I’m sort 
of doing what this would have done.   
 
Okay, but this is how then to get these random effect estimates of each person’s intercept 
slope out to a new data file.  That’s why I work on to produce that plot that showed each 
person’s intercept slope in that bi-variant plot.   
 
Now here is some additional work.  Maybe I can skip over this.  What I’m doing is to 
then reorganizing the data in multi-variant form.  Okay, so here’s a way.   You know, 
sometimes you want to get the data in multi-variant form where each variable given time 
points is a different variable.  Here is what I’m, that’s what I’m doing here is I’m creating 
then a dataset that has a different Hamilton values at different time points with different 
variable names.  Okay?  So this slide accomplishes that.   
 
And then this slide puts together the person’s estimates of the random effect with the 
estimated interceptance slope and creates estimates of the person’s Hamilton across the 
six time points.  Okay?  So with this slide what I’m doing is I’m taking each person’s 



intercept deviation, slop deviation, which I get from this file or this dataset randest, and 
using the estimated intercept and slope, I’m creating, what’s the estimated Hamilton at 
every time point for every subject.   
 
Okay, so I don’t know that you necessarily want to do this in all cases, but this shows 
how you can then create for each person, what is their estimated dependent variable value 
at every time point?  And then I plot those out and here’s how I got that bi-variant plot of 
the intercept and the slope.   
 
Okay, so that’s how one can get these plots out.  It’s unfortunately, it’s not a simple thing 
of just you know, plot this versus that, you have to do a little bit of work with the result of 
the analysis.   
 
Okay, let’s – before we try some of this, let me go a little bit further – yes, a question.   
 
Question:  So is that last part, is it **** you’ve got the other graphic on slide 14?  
 
Answer:  Yeah,  
 
Question: The one you’re time **** you’re still creating the other one with the dots.   
 
Answer:  The one I’m creating here is the one with the dots.   
 
Question:  Oh, that’s still the dots.   
 
Answer:  Yeah, that’s the one with the dots.  That’s right.  To get that Spaghetti Plot, I 
actually did that in SPSS and years ago, I went into it more recently and I can’t seem to 
recreate it.  Then change – you know, they change things and I don’t know how.  If you 
want to do that, let me get on the selling platform for a moment.   
 
I’ve worked out a program with Scientific Software called Super Mix.  Super Mix is 
available for, I think, it’s $425.  It does a lot of these plots that I’m illustrating today 
pretty automatically.  Now, why didn’t I talk about Super Mix for yesterday and today?  
More people have access – that know about SAS.  So I’m describing everything in terms 
of SAS, but actually, the plotting aspects, if you like that, you might want to investigate 
this program, Super Mix, it has better plotting facilities, easy plotting facilities.  The other 
advantage it has is for categorical outcomes like dichotomous outcomes, ordinal 
outcomes, counts.  It’s very fast relative to SAS.  It’s much faster than that.  So, some of 
these plots are pretty easy to get with Super Mix or with other software than with SAS, 
per se.   
 
Okay, let’s now answer the question of diagnosis.  Does it matter if you’re endogenous or 
not?  Yes, a question.   
 
Question:  I think it’s big time break –  
 



Answer:  Oh, it’s break.  I’m sorry; I thought we go to 10:00.  No?   
 
Question:  You said you didn’t have to One hour 15 minutes.   
 
Answer:  Oh really. I’m just looking at the listing, it says from 8:00 to 10:00 and then 
10:00 to 10:15 there’s a break.  Yeah, I don’t know.   Yeah, maybe can you check?  They 
do have… so it’s time for a break?  Okay, so I guess we’ll break then.  Sorry, take a 
break.   


